Math, asked by raksha365, 11 months ago

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola x^2/16 - y^2/9 = 1

Answers

Answered by Anonymous
25
\sf{\underline{We\:have\:to\:find:}}

(i) Co-ordinates of the foci

(ii) Co-ordinates of the vertices

(iii) Eccentricity

(iv) Length of latus rectum


(i) \sf{\underline{To\:find\:the\:co-ordinates of the vertices:}}

\sf{\underline{Equation\:of\:hyperbola:}}

\boxed{ \frac{ {x}^{2} }{16} - \frac{ {y}^{2} }{9} = 1}


\sf{\underline{In\:the\:form:}}

\boxed{ \frac{ {x}^{2} }{ {a}^{2} } - \frac{ {y}^{2} }{ {b}^{2} } = 1}


Since, foci and vertices of the hyperbola lies on x-axis,

\sf{\underline{Therefore:}}

 {a}^{2} = 16, a = \sqrt{16} , \boxed{a = 4}

 {b}^{2} = 9, b = \sqrt{9} , \boxed{b = 3}

Now, we know the values of a and b.


To find the value of c, we have to use this formula:

\boxed{ {c}^{2} = {a}^{2} + {b}^{2}}


Now, substituting the above values in this formula, we get,

\implies  {c}^{2} = {a}^{2} + {b}^{2}

\implies  {c}^{2} = 16 + 9

\implies  {c}^{2} = 25

\implies c = \sqrt{25}

\implies \boxed{c = 5}

\sf{\underline{We\:know\:that:}}

a = 4, b = 3, c = 5


(i) \sf{\underline{To\:find\:the\:co-ordinates\:of\:the\:foci:}}

To find the coordinates of foci, we have to use this formula:

\boxed{({\pm{c, 0}})}

\sf{\underline{Therefore:}}

Co-ordinates of foci are

\implies ({\pm{c, 0}})

\implies \boxed{({\pm{5, 0}})}


(ii) \sf{\underline{To\:find\:the\:co-ordinates\:of\:the\:vertices:}}

To find the coordinates of vertices, we have to use this formula:

\boxed{({\pm{a, 0}})}

\sf{\underline{Therefore:}}

Co-ordinates of vertices are

\implies ({\pm{a, 0}})

\implies \boxed{({\pm{4, 0}})}


(iii) \sf{\underline{To\:find\:the\:eccentricity:}}

To find the eccentricity, we have to use this formula:

\boxed{\frac{c}{a}}

\sf{\underline{Therefore:}}

The eccentricity is

\implies  \frac{c}{a}

\implies \boxed{ \frac{5}{4}}


(iv) \sf{\underline{To\:find\:the\:length\:of\:latus\:rectum:}}

To find the length of latus rectum, we have to use this formula:

\boxed{ \frac{2b ^{2} }{a}}

\sf{\underline{Therefore:}}

Length of latus rectum is

\implies  \frac{ {2b}^{2} }{a}

\implies  \frac{2 \times 9}{4}

\implies \boxed{\frac{9}{2}}


\sf{\underline{Therefore:}}

(i) Co-ordinates of the foci

\implies \boxed{({\pm{5, 0}})}

(ii) Co-ordinates of the vertices

\implies \boxed{({\pm{4, 0}})}

(iii) Eccentricity

\implies \boxed{ \frac{5}{4}}

(iv) Length of latus rectum

\implies \boxed{ \frac{9}{2}}

Anonymous: well done brother !!!
Anonymous: Thanks Bro!
Similar questions