Math, asked by priyankabharti2246, 5 months ago

Find the coordinates of the point dividing the line segment
joining the points A(8,0) and B(0,12) internally in the
ratio 2:3

Answers

Answered by Anonymous
0

Answer:Let P & Q be the points of trisection. Then AP:PB=1:2 & AQ:QB=2:1

(i) Let P divides AB in ratio 1:2

Hence m

1

=1;m

2

=2;x

1

=2;y

1

=−3;x

2

=−4,y

2

=−6

P(x,y)=P(

m

1

+m

2

m

1

x

2

+m

2

x

1

,

m

1

+m

2

m

1

y

2

+m

2

y

1

)=P(

1+2

1(−4)+2(2)

,

1+2

1(−6)+2(−3)

)

=P(

3

−4+4

,

3

−6−6

)=P(0,0)

(ii) Let Q divides AB in ratio 2:1

Here m

1

=2,m

2

=1,x

1

=2,y

1

=−3,x

2

=−4,y

2

=−6

=Q(

2+1

2(−4)+1(2)

,

2+1

2(−6)+1(−3)

)

=Q(

3

−8+2

,

3

−12−3

)

=Q(−2,−5)

∴ Hence the coordinates of points of trisection are (0,0) & (−2,−5).

Step-by-step explanation:

Attachments:
Similar questions