Math, asked by visweshshakthivel38, 10 months ago


Find the coordinates of the point which divides the join of A(-1, 7) and B(4, -3) in the ratio 2 : 3.​

Answers

Answered by ra8755jnish
0

Answer:

let the coordinate is p(x,y) then x= mx2+nx1/ m+n

x= 8-3/5

x=1

y= -6+21/5=3

the required coordinate is p(1,3)

Answered by ImperialGladiator
0

Step-by-step explanation:

Using section formula :

  \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n} \frac{{my}_{2} + {ny}_{1}}{m + n} \\

Where,

m = 2

n = 3

\sf {x}_{1} = -1

\sf {x}_{2} = 4

\sf {y}_{1} =  7

\sf {y}_{2} = (-3)

Substitution of the values :

 \longmapsto \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n}, \frac{{my}_{2} + {ny}_{1}}{m + n} \\  \longmapsto \sf \:x, \: y  =  \frac{8 + ( - 3)}{5} , \frac{ - 6 + 21}{5}  \\  \sf \: \longmapsto x, \: y  =  \frac{5}{5} ,  \frac{15}{5}  \\  \sf \:  \longmapsto x, \: y  =( 1, 3 )\: ans.

Similar questions