Math, asked by kundurugnansundar200, 11 months ago

Find the coordinates of the points of tri section of the line segment joining the points (-3,-5) and (-6,-8)​

Answers

Answered by Anonymous
8

Answer :-

(-4,-6) and (-5,-7)

Solution :-

Let the points of line segment be P(-3,-5) and Q(-6,-8)

Let the points of trisection be A, B

A divides the line segment internally in the ratio of 1 : 2

Using section formula

P(x , y) =  \bigg( \dfrac{mx_2 + nx_1  }{m + n}  ,  \dfrac{my_2 + ny_1  }{m + n}  \bigg)

P(-3,-5) Q(-6,-8) m : n = 1 : 2

Here,

  • m = 1
  • n = 2
  • x2 = - 6
  • x1 = - 3
  • y2 = - 8
  • y1 = - 5

Substituting the values

 \implies A(x , y) =  \bigg( \dfrac{1( - 6) + 2( - 3)}{1 + 2}  ,  \dfrac{1( - 8)+ 2( - 5)  }{1 + 2}  \bigg)

 \implies A(x , y) =  \bigg( \dfrac{ - 6 - 6}{3}  ,  \dfrac{ - 8 - 10 }{3}  \bigg)

 \implies A(x , y) =  \bigg( \dfrac{ - 12}{3}  ,  \dfrac{ - 18 }{3}  \bigg)

 \implies A(x , y) =  (  - 4  ,   - 6  )

B divides the line segment internally in the ratio of 2 : 1

Using section formula

P(x , y) =  \bigg( \dfrac{mx_2 + nx_1  }{m + n}  ,  \dfrac{my_2 + ny_1  }{m + n}  \bigg)

P(-3,-5) Q(-6,-8) m : n = 2 : 1

Here,

  • m = 2
  • n = 1
  • x2 = - 6
  • x1 = - 3
  • y2 = - 8
  • y1 = - 5

Substituting the values

 \implies B(x , y) =  \bigg( \dfrac{2( - 6) + 1( - 3)}{2 + 1}  ,  \dfrac{2( - 8)+ 1( - 5)  }{2 + 1}  \bigg)

 \implies B(x , y) =  \bigg( \dfrac{ - 12 - 3}{3}  ,  \dfrac{ - 16 - 5  }{3}  \bigg)

 \implies B(x , y) =  \bigg( \dfrac{ - 15}{3}  ,  \dfrac{ - 21  }{3}  \bigg)

 \implies B(x , y) =  (  - 5 ,   - 7)

Therefore the coordinates of trisection are (- 4, - 6) and (-5, - 7)

Similar questions