Math, asked by ashwanilodhi08, 1 month ago

find the cordinates of the point which divides intenally the line joining the point 6,-9 and 4,6 in the ratio 3:4​

Answers

Answered by sethrollins13
118

Given :

  • Points (6,-9) and (4,6)

To Find :

  • Cooridinates of the point which divides them in the ratio 3:4 .

Solution :

\longmapsto\tt{{x}_{1}=6}

\longmapsto\tt{{x}_{2}=4}

\longmapsto\tt{{y}_{1}=-9}

\longmapsto\tt{{y}_{2}=6}

For x :

Using Section Formula :

\longmapsto\tt\boxed{x=\dfrac{{m}_{1}{x}_{2}+{m}_{2}{x}_{1}}{{m}_{1}+{m}_{2}}}

Putting Values :

\longmapsto\tt{x=\dfrac{3\times{4}+4\times{6}}{3+4}}

\longmapsto\tt{x=\dfrac{12+24}{7}}

\longmapsto\tt\bf{x=\dfrac{36}{7}}

Similarly :

For y :

Using Section Formula :

\longmapsto\tt\boxed{y=\dfrac{{m}_{1}{y}_{2}+{m}_{2}{y}_{1}}{{m}_{1}+{m}_{2}}}

Putting Values :

\longmapsto\tt{y=\dfrac{3\times{6}+4\times{(-9)}}{3+4}}

\longmapsto\tt{y=\dfrac{12-36}{7}}

\longmapsto\tt\bf{y=\dfrac{-18}{7}}

So , The Cooridinates of the point is 36/7 and -18/7 .

Answered by MяMαgıcıαη
253

▬▬▬▬▬▬▬▬▬▬▬▬

  • \tiny\boxed{\sf{\purple{Coordinates\:of\:the\:point\:=\:\bigg(\dfrac{36}{7}\:,\:\dfrac{-18}{7}\bigg)}}}

Explanation :

\underline{\underline{\bf{Given\::-}}}

  • A point divides the line segment joining points (6 , -9) and (4 , 6) in the ratio 3:4.

\underline{\underline{\bf{To\:Find\::-}}}

  • Coordinates of the point ?

\underline{\underline{\bf{Solution\::-}}}

Using section formula :-

\small\longrightarrow\:\sf Coordinates\:=\:\bigg(\dfrac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}}\:,\:\dfrac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}\bigg)

Where,

  • \sf m_{1} = 3\:,\:m_{2} = 4
  • \sf x_{1} = 6\:,\:x_{2} = 4
  • \sf y_{1} = -9\:,\:y_{2} = 6

Putting all known values :-

\small\longrightarrow\:\sf Coordinates\:=\:\bigg(\dfrac{(3\:\times\:4) + (4\:\times\:6)}{3 + 4}\:,\:\dfrac{(3\:\times\:6) + [4\:\times\:(-9)]}{3 + 4}\bigg)

\small\longrightarrow\:\sf Coordinates\:=\:\bigg(\dfrac{12 + 24}{7}\:,\:\dfrac{18 + (-36)}{7}\bigg)

\small\longrightarrow\:\sf Coordinates\:=\:\bigg(\dfrac{36}{7}\:,\:\dfrac{18 - 36}{7}\bigg)

\small\longrightarrow\:\underline{\underline{\sf {Coordinates\:=\:\bigg(\dfrac{36}{7}\:,\:\dfrac{-18}{7}\bigg)}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\underline{\underline{\bf{More\:to\:know\::-}}}

  • For finding distance b/w two points, we use distance formula, i.e, \sf \sqrt{\bigg(x_{2} - x_{1}\bigg)^2 + \bigg(y_{2} - y_{1}\bigg)^2}

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions