Math, asked by namrata8127, 6 months ago

find the cube root 1404928 with steps

Answers

Answered by Mariyam121
1

Step-by-step explanation:

1404928 is said to be a perfect cube because 112 x 112 x 112 is equal to 1404928. Since 1404928 is a whole number, it is a perfect cube. The nearest previous perfect cube is 1367631 and the nearest next perfect cube is 1442897

Answered by Yuseong
7

Here, we have to find the cube root of 1404928 , so at first we'll resolve the number into prime factors and then we'll make triplets in order to calculate the cube root of 1404928.

Resolving 1404928 into prime factors we get :

 \large{ \begin{array}{c| c} 2& \underline{1404928} \\ 2& \underline{702464} \\ 2& \underline{351232} \\ 2& \underline{175616}  \\ 2& \underline{87808} \\2& \underline{43904}  \\2& \underline{21952} \\ 2&  \underline{10976}  \\ 2& \underline{5488} \\ 2& \underline{2744} \\ 2& \underline{1372} \\ 2& \underline{686} \\ 7& \underline{343} \\ 7& \underline{49} \\ 7& \underline{7} \\  \: &1\end{array}}

→ 1404928 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 7 × 7 × 7

→ 1404928 =  \sf { {2}^{3} } ×  \sf { {2}^{3} } ×  \sf { {2}^{3} } ×  \sf { {2}^{3} } ×  \sf { {7}^{3} }

  \small\sqrt[3]{1404928}  =  \sqrt[3]{ {2}^{3} \times  {2}^{3}  \times  {2}^{3}  \times  {2}^{3}  \times  {7}^{3}  }  \\

  \small\sqrt[3]{1404928}  =  \sqrt[3]{ {2}^{3}}  \times  \sqrt[3]{{2}^{3}}  \times  \sqrt[3]{{2}^{3} } \times  \sqrt[3]{{2}^{3}}  \times  \sqrt[3]{{7}^{3}}  \\

[ Since  \sf \purple { \sqrt[3]{a \times b} = \sqrt[3]{a}  \times \sqrt[3]{b} } ]

  \sqrt[3]{1404928} = 2 × 2 × 2 × 2 × 7

  \underline{\boxed{\sf{\large\sqrt[3]{1404928} = 112 }}} \: \red{\bigstar}

Hence, cube root of 1404928 is 112.

More :

  • The cube of even numbers are always even.
  • The cube of odd numbers are always odd.

  •  {\underline {\boxed {\Large {\bf \gray {\sqrt[3]{a \times b} = \sqrt[3]{a}  \times \sqrt[3]{b} } }}}}

  •  {\underline {\boxed {\Large {\bf \gray {\sqrt[3]{ \dfrac{a }{b}} =\dfrac{ \sqrt[3]{a}}{  \sqrt[3]{b} }} }}}}
Similar questions