Math, asked by Anonymous, 9 hours ago

Find the cube roots of the following numbers:-
_
8000
_
729
_
343
_

Answers

Answered by tejasvsharma370
0

Answer:

the answer is

Step-by-step explanation:

1) 8000 cube root = 20

2) 729 cube root = 9

3) 343 cube root = 7

please mark me as brainleast  please  please  please  please  please

Answered by ᏞovingHeart
124

\Large{\underbrace{\sf{\green{Required \; Solution:}}}}

To find the cubes of 8000 , 729  & 343.

⬩ 8000

    \Large{ \begin{array}{c|c} \tt 2 & \sf{ 8000} \\  \tt 2 & \sf { 4000} \\ \tt 2 & \sf{ 2000} \\ \tt 2 & \sf{ 1000} \\ \tt 2 & \sf{ 500} \\ \tt 2 & \sf{ 250} \\ \tt 5 & \sf{ 125} \\ \tt 5 & \sf{ 25} \\ \tt 5 & \sf{ 5} \\ \tt & \sf{ 1} \\ \end{array}}

Now,

8000 =

\implies \sf{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 5}

\implies \sf{ (2 \times 5) \times (2 \times 5) \times (2 \times 5) \times 2^3}

\implies \sf{(2 \times 5)^3 \times 2^3}

\implies \sf{(10)^3 \times 2^3}

\implies \sf{10^3 \times 2^3}

\implies \sf{ (10 \times 2)^3  } \dots \Big \langle \purple{\frak{a^m \times b^m = (a \times b)^m}} \Big \rangle

\implies \underline{\underline{\sf{ \; (20) \; }}}

\therefore \underline{\boxed{\sf{\orange{ \sqrt[\sf{3}]{\sf{8000}} = 20  }} }}

_

⬩ 729

    \Large{ \begin{array}{c|c} \tt 3 & \sf{ 729} \\  \tt 3 & \sf { 243} \\ \tt 3 & \sf{ 81} \\ \tt 3 & \sf{ 27} \\ \tt 3 & \sf{ 9} \\ \tt 3 & \sf{ 3 } \\ \tt  & \sf{ 1} \\ \end{array}}

Now,

729 =

\implies \sf{ 3 \times 3 \times 3 \times 3 \times 3 \times 3 }

\implies \sf{ ( 3 \times 3) \times ( 3 \times 3) \times ( 3 \times 3)  }

\implies \sf{( 3 \times 3) ^3 }

\implies \underline{\underline{\sf{ \; (9)^3 \; }}}

\therefore \underline{\boxed{\sf{\orange{ \sqrt[\sf{3}]{\sf{729}} = 9  }} }}

_

⬩ 343

    \Large{ \begin{array}{c|c} \tt 7 & \sf{ 343} \\  \tt 7 & \sf { 49} \\ \tt 7 & \sf{ 7} \\ \tt  & \sf{ 1} \end{array}}

Now,

343 =

\implies \sf{ 7 \times 7 \times 7}

\implies \underline{\underline{\sf{ \; (7)^3 \; }}}

\therefore \underline{\boxed{\sf{\orange{ \sqrt[\sf{3}]{\sf{343}} = 7  }} }}

__

* ⁺◦﹆◞˚ ꒰ More to know ꒱

   

⋆ Law of Indices:

  • \sf{a^m \times a^n = a^{m + n}}
  • \sf{a^m \div a^n = a^{m-n}}
  • \sf{(a \times b)^m = a^m \times b^m}
  • \sf{a^0 = 1}
  • \sf{a^{-m} = \dfrac{1}{a^m}}
  • \sf{(a^m)^n = a}
  • \sf{\bigg( \dfrac{a}{b} \bigg)^m = \dfrac{a^m}{b^m}}
  • \sf{ \bigg( \dfrac{a}{b} \bigg)^{-m} = \bigg( \dfrac{b}{a} \bigg)^m }

_____

Apologies for mistakes <3

Similar questions