Math, asked by sslvas2017, 4 months ago

Find the curvature of the curve y=x^3 at the point (1,1)

Answers

Answered by MANISHAKUMARI03
0

Answer:

curvature of the curve is 0

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

Now,

We know that,

\tt \:  \longrightarrow \:  \boxed{ \purple{ \bf \: Curvature \: ( \kappa) \:  = \dfrac{y_2}{ { \bigg(1 +  {(y_1)}^{2}  \bigg)}^{ \frac{3}{2} } } }}

\tt \:  \longrightarrow \: Now,  \: y \:  =  \:  {x}^{3}

☆ On differentiate both sides w. r. t. x, we get

\tt \:  \longrightarrow \: \dfrac{d}{dx} y = \dfrac{d}{dx}  {x}^{3}

\tt \:  \longrightarrow \: y_1 =  {3x}^{2}

☆ On differentiate both sides w. r. t. x, we get

\tt \:  \longrightarrow \: \dfrac{d}{dx}y_1  = \dfrac{d}{dx}  {3x}^{2}

\tt \:  \longrightarrow \: y_2 = 6x

☆ Now, Curvature at (1,1) is

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{y_2}{ { \bigg(1 +  {(y_1)}^{2}  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6x}{ { \bigg(1 +  {(3 {x}^{2} )}^{2}  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6x}{ { \bigg(1 +  {9x}^{4}  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6 \times 1}{ { \bigg(1 +  {9 \times (1)}^{4}  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6}{ { \bigg(1 +  9  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6}{ { \bigg(10 \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6}{10 \sqrt{10} }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{3}{5 \sqrt{10} }  \times \dfrac{ \sqrt{10} }{ \sqrt{10} }

\bf\implies \:  \boxed{ \red{\tt \:   \: Curvature \: ( \kappa) \:  = \dfrac{3 \sqrt{10} }{50} }}

Similar questions