Math, asked by kandakatla3754, 9 months ago

Find the curved and total surface area of the cone whose height is 8 cm and radius of base is 6 cm

Answers

Answered by sethrollins13
20

Given :

  • Height = 8cm
  • Radius = 6cm

To Find :

  • C.S.A of Cone
  • T.S.A of Cone

Solution :

Firstly we will find the slant height of cone :

\longrightarrow\tt{{l}^{2}=\sqrt{{h}^{2}+{r}^{2}}}

\longrightarrow\tt{{l}^{2}=\sqrt{{(8)}^{2}+{(6)}^{2}}}

\longrightarrow\tt{{l}^{2}=\sqrt{64+36}}

\longrightarrow\tt{{l}^{2}=\sqrt{100}}

\longrightarrow\tt\bold{l=10cm}

So , The slant height (l) of Cone is 10cm...

Now :

\longrightarrow\tt{Slant\:height(l)=10cm}

\longrightarrow\tt{Radius(r)=6cm}

Using Formula :

\longrightarrow\tt\boxed{C.S.A\:of\:Cone=\pi{rl}}

Putting Values :

\longrightarrow\tt{\dfrac{22}{7}\times{6}\times{10}}

\longrightarrow\tt{\cancel\dfrac{1320}{7}}

\longrightarrow\tt\bold{188.5{cm}^{2}\:(Approx.)}

So , C.S.A of Cone is 188.5 cm²..

_____________________

Using Formula :

\longrightarrow\tt\boxed{T.S.A\:of\:Cone=\pi{rl}+\pi{{r}^{2}}}

Putting Values :

\longrightarrow\tt{\dfrac{22}{7}\times{6}\times{10}+\dfrac{22}{7}\times{6}\times{6}}

\longrightarrow\tt{\dfrac{1320}{7}+\dfrac{792}{7}}

\longrightarrow\tt{\cancel\dfrac{2112}{7}}

\longrightarrow\tt\bold{301.7{cm}^{2}\:(Approx.)}

So , T.S.A of Cone is 301.7cm²..

Similar questions