Math, asked by suvida6907, 2 months ago

find the derivate of x^3 - 27 using the first principle​

Answers

Answered by BrainlyTwinklingstar
3

The first principle of derivative :

Suppose f is a real value function defined by \displaystyle \sf  {f}^{1} (x) =  \lim_{h\to 0} \frac{f(x + h) - f(x)}{h} where ever the limit exists is called derivative of f at x

According to the question,

 \sf f(x) =  {x}^{3}  - 27

\displaystyle \sf  f (x) =  \lim_{h\to 0} \dfrac{f(x + h) - f(x)}{h}

\displaystyle \sf  f (x) =  \lim_{h\to 0} \dfrac{(x + h)^{3}  -27 - ( {x}^{3}  - 27)}{h}

\displaystyle \sf  f (x) =  \lim_{h\to 0} \dfrac{ {x}^{3} +  {3hx}^{2}  +  {3h}^{2}x +  {h}^{3}   - 27 -  {x}^{3} + 27  }{h}

\displaystyle \sf  f (x) =  \lim_{h\to 0} \dfrac{3h {x}^{2} +  {3h}^{2} x +  {h}^{3}  }{h}

\displaystyle \sf  f (x) =  \lim_{h\to 0} \dfrac{h(3{x}^{2} +  {3}hx +  {h}^{2})  }{h}

\displaystyle \sf  f (x) =  \lim_{h\to 0} (3{x}^{2} +  {3}hx +  {h}^{2})

\displaystyle \sf  f (x) =  3{x}^{2}

Similar questions