Find the derivative by first principle:
Answers
Answered by
0
HOPE IT HELPS U ✌️✌️
Attachments:
Answered by
0
Answer:
f'(x) = Cosx / 2√Sinx
Step-by-step explanation:
f(x) = √Sinx
f'(x) = Lim h-0 (f(x + h) - f(x) ) /h
=> f'(x) = Lim h-0 (√Sin(x + h) - √Sinx )/h
Mu;tiplying & Divding by √Sin(x + h) + √Sinx
=> f'(x) = Lim h-0 (√Sin(x + h) - √Sinx )/h * (√Sin(x + h) + √Sinx)/((√Sin(x + h) + √Sinx)
=> f'(x) = Lim h-0 (Sin(x + h) - Sinx) / (h (√Sin(x + h) + √Sinx))
Using Sin (A - B) = SinACosB + CosASinB
=> f'(x) = Lim h-0 (Sin(x + h) - Sinx) / (h (√Sin(x + h) + √Sinx))
=> f'(x) = Lim h-0 (SinxCosh + CosxSinh - Sinx ) / (h (√Sin(x + h) + √Sinx))
=> f'(x) = Lim h-0 (Sinx(Cosh - 1)/h + CosxSinh/h ) / ( (√Sin(x + h) + √Sinx))
putting (Cosh - 1)/h = 0 & Sinh/h = 1 & h = 0
=> f'(x) = Cosx / 2√Sinx
Similar questions