Physics, asked by Vikram470, 8 months ago

find the derivative of :-​

Attachments:

Answers

Answered by harshrajjha5
0

Answer:

See the above solution.

Attachments:
Answered by DrNykterstein
4

 \sf \rightarrow \quad y = cot \bigg(\pi -  \dfrac{1}{x}  \bigg) \\  \\  \sf \rightarrow \quad \frac{dy}{dx}  =  \frac{d \: cot \big(\pi -  \frac{1}{x}  \big)}{dx}  \\  \\ \sf \rightarrow \quad \frac{dy}{dx}  =  \frac{d \: cot \big(\pi -  \frac{1}{x}  \big)}{d  \bigg( \pi -  \dfrac{1}{x} \bigg) }   \cdot  \frac{d  \bigg( \pi -  \dfrac{1}{x} \bigg) }{dx}  \\  \\ \sf \rightarrow \quad \frac{dy}{dx} =  -{cosec}^{2} \bigg( \pi -  \dfrac{1}{x} \bigg) \cdot   \bigg(\frac{d\pi}{dx}   -  \frac{d {x}^{ - 1} }{dx}  \bigg) \\  \\ \sf \rightarrow \quad \frac{dy}{dx} = -{cosec}^{2} \bigg( \pi -  \dfrac{1}{x} \bigg) \cdot \{0 -  ( -  {x}^{ - 2} ) \} \\  \\  \sf \rightarrow \quad \frac{dy}{dx} = \frac{-{cosec}^{2} \big( \pi -  \frac{1}{x} \big)}{ {x}^{2} }  \\  \\

\sf  \underline{Formulae \:  Used} \\  \star  \qquad  \frac{du}{dt}  =  \frac{du}{dx}  \cdot  \frac{dx}{dt}  \\  \\  \star  \qquad  \frac{da}{dt}  = 0 \qquad a =  \sf constant \\  \\  \star \qquad  \frac{d \: cot \: x}{dx}  =  -  {cosec}^{2}  \: x \\  \\  \star \qquad  \frac{d(u - v)}{dx}  =  \frac{du}{dx}  -  \frac{dv}{dx}  \\  \\   \star \qquad\frac{d {x}^{n} }{dx}  = n \cdot  {x}^{n - 1}  \\  \\

\sf  \underline{Some \:  Formulae} \\  \star \qquad  \frac{d \: sin \: x}{dx}  = cos \: x \\  \\  \star \qquad   \frac{d \: cos \: x}{dx}  =  - sin \: x \\  \\  \star \qquad  \frac{d \:  {e}^{x} }{dx}  =  {e}^{x}  \\  \\  \star \qquad  \frac{d(nu)}{dx}  = n \cdot  \frac{du}{dx} \qquad n =  \sf constant \\  \\  \star \qquad   \frac{d(tan \: x)}{dx}  =  {sec}^{2}  \: x

Similar questions