Math, asked by Gouravrothaki3612, 15 hours ago

Find the derivative of, (2x+3)³ using first principal

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Let assume that

\rm \: f(x) =  {(2x + 3)}^{3}

So,

\rm \: f(x + h) =  {(2x + 2h + 3)}^{3}

By using Definition of First Principal, we have

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h}

On substituting the values from above, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{ {(2x + 2h + 3)}^{3}  -  {(2x + 3)}^{3} }{h}

can be further rewritten as

\rm \:  =  \: 2\displaystyle\lim_{h \to 0}\rm  \frac{ {(2x + 2h + 3)}^{3}  -  {(2x + 3)}^{3} }{2h}

\rm \:  =  \: 2\displaystyle\lim_{h \to 0}\rm  \frac{ {(2x + 2h + 3)}^{3}  -  {(2x + 3)}^{3} }{2h + 2x - 2x}

\rm \:  =  \: 2\displaystyle\lim_{2x + 2h + 3 \to 2x + 3}\rm  \frac{ {(2x + 2h + 3)}^{3}  -  {(2x + 3)}^{3} }{2h + 2x - 2x + 3 - 3}

\rm \:  =  \: 2\displaystyle\lim_{2x + 2h + 3 \to 2x + 3}\rm  \frac{ {(2x + 2h + 3)}^{3}  -  {(2x + 3)}^{3} }{(2x + 2h + 3) - (2x + 3)}

We know,

\boxed{\tt{ \displaystyle\lim_{x \to a}\rm  \:  \frac{ {x}^{n}  -  {a}^{n} }{x - a} \:  =  \:  {n \: a}^{n \:  -  \: 1} \: }} \\

So, using this result, we get

\rm \:  =  \: 2 \:  \times  \: 3 \:  {(2x + 3)}^{3 - 1}

\rm \:  =  \: 6 \:  {(2x + 3)}^{2}

Hence,

\rm\implies \:\boxed{\tt{ \dfrac{d}{dx} {(2x + 3)}^{3} = 6 {(2x + 3)}^{2} \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
6

Question:-

Find the derivative of, (2x+3)³ using first principal.

Given:-

  • The Equation (2x+3)³.

To Find:-

  • The derivative of, (2x+3)³ using first principal.

Solution:-

 \sf \large \frac{d}{dx}  = (2x + 3) {}^{3}

\sf \large = 3(2x + 3) {}^{2} . \frac{d}{dx} (2x + 3)

 \sf \large = 3(2x + 3) {}^{2} .[ \frac{d}{dx} (2x) +  \frac{d}{dx} (3)]

 \sf \large = 3(2x + 3) {}^{2} [2 \frac{dx}{dx} + 0 ]

 \sf \large = 3(2x + 3) {}^{2} (2)

 \sf \large = 6(2x + 3) {}^{2}

Answer:-

\sf \large{ \boxed{ \sf \large \red{ \frac{d}{dx} (2x + 3) {}^{3}  = 6(2x + 3) {}^{2} .}}}

Hope you have satisfied.

Similar questions