Math, asked by deepthivennam, 6 months ago

find the derivative of √2x-3+√7-3x

Find the derivative ​

Attachments:

Answers

Answered by Anonymous
25

Answer ,

Given equation,

 \longrightarrow \tt \: y =  \sqrt{2x - 3}  +  \sqrt{7 - 3x}

Since the it's a function in function

  • First , we differentiate the main function and then the internal function

Differentiating on both the sides ,

 \longrightarrow \rm \:  \frac{dy}{dx}  =  \frac{d}{dx}  { \bigg\{(2x - 3)}^{ \frac{1}{2} }  + {(7 - 3x)}^{ \frac{1}{2} } \bigg\} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ \longrightarrow \rm \:  \frac{dy}{dx}  =  \frac{d}{dx} \:  {(2x - 3)}^{ \frac{1}{2} }  +  \frac{d}{dx} {(7 - 3x)}^{ \frac{1}{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \longrightarrow \rm \:  \frac{dy}{dx}  =   \frac{1}{ \cancel2 \sqrt{2x - 3} }  \times  \cancel2 +  \frac{1}{2 \sqrt{7 - 3x} }  \times ( - 3) \\  \\ \longrightarrow { \underline{\rm{ \red{ \underline{ \:  \frac{dy}{dx}  =  \frac{1}{ \sqrt{2x - 3} }  -  \frac{ - 3}{2 \sqrt{7 - 3x} } }}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answered by ᎪɓhᎥⲊhҽᏦ
17

Questions:-

find the derivative of √2x-3+√7-3x ?

Answer

We know

  \tt{\dfrac{d}{dx}( \sqrt{x} )}  =  \dfrac{d}{dx} ( {x}^{ \frac{1}{2} } ) =  \frac{1}{2}  {(x)}^{1 -  \frac{1}{2} }  \\

 \tt =  \dfrac{1}{2}  {(x)}^{ -  \frac{1}{2} }  =  \dfrac{1}{2 \sqrt{x} }  \\

So, using it as a identity of derivative...

Let's come to the question...

  = \tt \frac{d}{dx}(  \sqrt{2x - 3}  +  \sqrt{7 - 3x} )

 \tt =  \frac{1}{2 \sqrt{2x - 3}}.\frac{d}{dx}(2x - 3) + \frac{1}{2 \sqrt{7 - 3x}}.\frac{d}{dx}(7 - 3x)

  \tt=  \frac{1}{ \cancel2 \sqrt{2x - 3} } . \cancel2 +  \frac{1}{2 \sqrt{7 - 3x} } . - 3

 \underline{\underline{\boxed{\tt=  \frac{1}{ \sqrt{2x - 3} }  -  \frac{3}{2 \sqrt{7 - 3x} } }}}

Some Derivative Formulae:-

 \tt \:  \dfrac{d}{dx} ( {x)}^{n}  = n {x}^{n - 1}

  \tt\dfrac{d}{dx}(  logx)  =  \dfrac{1}{x}

 \tt \:  \dfrac{d}{dx} (c) = 0

 \tt\dfrac{d}{dx} (x) = 1

 \tt \dfrac{d}{dx} (u \:  \pm \: v) =  \dfrac{du}{dx}  \pm \:  \dfrac{dv}{dx}  \\

Similar questions