Math, asked by parii7518, 1 year ago

Find the derivative of f(e^tanx) w r t x at x=0. f'(1) = 5

Answers

Answered by Anonymous
29
☆☆YOUR ANSWER IS HERE☆☆

SOLUTION:--


f (e^tanx) 
taking derivative wrt x we get 
f' (e^tanx) × [e^tanx] × [sec^2 (x)] 

putting x = 0 we get 
f'(e^0) ×[e^0] × [sec^2 (0) ] 
= f'(1) ×(1)×(1) 

It is given that f'(1) = 5 

》 Answer is 5 ×1×1 = 5
Answered by VaibhavSR
0

Answer:

Hence, the derlvative off\left(e^{\tan x}\right) wIth respect to x at x=0 Is 5 .

Step-by-step explanation:

We have function f\left(e^{\tan x}\right) and given thatf^{\prime}(1)=5.

Differentiate function f\left(e^{\tan x}\right) with respect to x, we get

\frac{d}{d x} f\left(e^{\tan x}\right)=f^{\prime}\left(e^{\tan x}\right) \frac{d}{d x} e^{\tan x} \text { (By chain rule) }

\Rightarrow \frac{d}{d x} f\left(e^{\tan x}\right)=f^{\prime}\left(e^{\tan x}\right) e^{\tan x} \frac{d}{d x} \tan x \text { (By chain rule) }

\Rightarrow \frac{d}{d x} f\left(e^{\tan x}\right)=f^{\prime}\left(e^{\tan x}\right) e^{\tan x} \sec ^{2} x \cdot\left(\because \frac{d}{d x} \tan x=\sec ^{2} x\right)

Now, \frac{d}{d x} f\left(e^{\tan x}\right) at x=0 is \left[\frac{d}{d x} f\left(e^{\tan x}\right)\right]_{x=0}

=\left[f^{\prime}\left(e^{\tan x}\right) e^{\tan x} \sec ^{2} x\right]_{x=0}

=f^{\prime}\left(e^{\tan 0}\right) e^{\tan 0} \sec ^{2} 0=f^{\prime}(1) \times 1 \times 1=f^{\prime}(1)=5

\left.\left(\because \tan 0=0, \sec 0=1, e^{\tan 0}=e^{0}=1 \text { and } f^{\prime}(1)=5 \text { (given }

Hence, the derlvative off\left(e^{\tan x}\right) wIth respect to x at x=0 Is 5 .

#SPJ2

Similar questions