Math, asked by dattagourab8323, 1 year ago

Find the derivative of f(tanx) w.r.t. f(secx) at x=pi/4 , when f(1) = 2 , g(root2) = 4

Answers

Answered by Shubhendu8898
3
Hi ..here is your solution..
hope u understand
Attachments:
Answered by boffeemadrid
9

Answer:

Step-by-step explanation:

Differentiate f(tanx) with respect to x, we get

\frac{df(tanx)}{dx}=sec^{2}x                            (1)

Now, Differentiate f(secx) with respect to x, we get

\frac{df(secx)}{dx}=secxtanx                          (2)

Divide (1) by (2), we get

\frac{df(tanx)}{df(secx)}=\frac{sec^{2}x}{secxtanx}

=\frac{secx}{tanx}

=\frac{1}{sinx}

Now, value of \frac{df(tanx)}{df(secx)} at x=\frac{{\pi}}{4} is:

\frac{df(tanx)}{df(secx)}=\frac{1}{sin\frac{{\pi}}{4}}=\sqrt{2}.

Similar questions