Math, asked by rasaj, 11 months ago

Find the derivative of log[log(logx⅝)]​

Answers

Answered by Anonymous
124

Question :

Find the derivative of

 \sf log( log( logx {}^{ \frac{5}{8} } ) )

Theory :

Chain rule

Let y = f(t) ,t= g(u) and u = m(x) ,then

 \sf \dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Solution :

  \sf \: y =  log( log( log \: x {}^{ \frac{5}{8} }  ) )

Now Differentiate with respect to x by using chain rule .

 \sf \frac{dy}{dx}  =  \frac{d \:  log( log( log \: x {}^{ \frac{5}{8} } ) ) }{d \:  log( log \: x {}^{ \frac{5}{8} } ) }  \times  \frac{d \:  log( log \: x {}^{ \frac{5}{8} }  ) }{d \:  log \: x {}^{ \frac{5}{8} } }  \times  \frac{d \:  log \: x {}^{ \frac{5}{8} } }{dx}

  \sf\implies  \frac{dy}{dx}  =  \frac{1}{ log( log \: x {}^{ \frac{5}{8} } ) }  \times  \frac{1}{ log(x {}^{ \frac{5}{8} } ) }  \times  \frac{5}{8}  \frac{d \:  log(x) }{dx}

 \sf \implies \dfrac{dy}{dx}  =  \dfrac{5}{8 \times  log( log \: x {}^{ \frac{5}{8} } ) \times  log \: x {}^{ \frac{5}{8} }   }  \times  \dfrac{1}{x}

 \sf \implies \dfrac{dy}{dx}  =  \dfrac{5}{8}  \times  \dfrac{1}{x log( log \: x {}^{ \frac{5}{8} } )  \times  log(x {}^{ \frac{5}{8} } ) }

It is the required solution

________________________

Formula's of differentiation:

 \sf1)  \frac{d \log \: x}{dx}  =  \frac{1}{x}

 \sf2) \frac{d(constant)}{dx}  = 0

Properties of Logarithm:

 \sf log(x {}^{n} )  =n  \log \: x

Similar questions