Math, asked by adarsh6633, 1 year ago

find the derivative of √(sin 2x) using the 1st principal​

Answers

Answered by hennayeahyea91
0

sin(2x)−−−−−−√sin⁡(2x)

f(x)=sin(2x)−−−−−−√f(x)=sin⁡(2x)

f(x+Δx)=sin(2x+2Δx)−−−−−−−−−−−√f(x+Δx)=sin⁡(2x+2Δx)

Now,

f′(x)=limΔx→0f(x+Δx)−f(x)Δxf′(x)=limΔx→0f(x+Δx)−f(x)Δx

=limΔx→0sin(2x+2Δx)−−−−−−−−−−−√−sin(2x)−−−−−−√

Answered by ItSdHrUvSiNgH
8

Step-by-step explanation:

 \huge\blue{\underline{\underline{\bf question}}}

find \:  \: derivative \:  \: of \implies \\  \\  \sqrt{ \sin(2x) }

 \huge\blue{\underline{\underline{\bf answer}}}

   \large \red{formula} \\  \\ \sin(2x)  = 2 \sin(x)  \cos(x)

 \\   \\  \implies   \frac{d}{dx}( \sqrt{ \sin(2x) } )\\  \\   \implies  \frac{d}{dx} ( \sqrt{2 \sin(x)  \cos(x) } ) \\  \\  \implies \frac{d}{dx}  {(2 \sin(x)  \cos(x) )}^{ (\frac{1}{2} )}  \\  \\  \implies   \frac{ \not2}{ \not2} (  \cos(x)  \times ( -  \sin(x) ) \\  \\  \implies  -  \sin(x)  \cos(x)

Similar questions