Math, asked by Anonymous, 8 months ago

Find the derivative of
 \sf \:  {e}^{ log( \sqrt{1 +  {tan}^{2} }x ) }
(a) tan x
(b) sec x
(c) sec^2x
(d) sec(x).tan(x) ​

Answers

Answered by rajk123654987
44

Answer:

Opt 4) Sec X . Tan X

Step-by-step explanation:

Refer to the attachment

Attachments:
Answered by BrainlyPopularman
77

GIVEN :

  \\{ \bold{\implies y  =  {e}^{ log  \left \{ \sqrt{1 + {tan}^{2} (x)} \:  \right\}}}} \\

TO FIND :

  \\{ \bold{\implies  \dfrac{dy}{dx} =  ? }} \\

SOLUTION :

  \\{ \bold{\implies y  =  {e}^{ log  \left \{ \sqrt{1 + {tan}^{2} (x)} \:  \right\}}}} \\

• Using log property –

  \\ \dashrightarrow \:  \: { \bold{ {e}^{ log(x) = x}}} \\

• So that –

  \\{ \bold{\implies y  =  \sqrt{1 + {tan}^{2} (x)} }} \\

• We also know that –

  \\ \:  \:  \dashrightarrow \:  \: { \bold{ 1 + {tan}^{2} (x) =  { \sec}^{2}(x) }} \\

• So that –

  \\{ \bold{\implies y  =  \sqrt{{ \sec}^{2}(x)}}} \\

  \\{ \bold{\implies y  =  \sec(x) }} \\

• Now difference with respect to 'x' –

  \\{ \bold{\implies  \dfrac{dy}{dx}   =   \dfrac{d \{\sec(x) \}}{dx}}} \\

  \\ \left[ { \bold{ \:  \: \because \:  \:  \dfrac{d \{\sec(x) \}}{dx}   =  \sec(x). \tan(x)}} \right] \: \\

  \\{ \bold{\implies  \dfrac{dy}{dx}   =  \sec(x). \tan(x)}} \\

  \\ \implies \large { \boxed{ \bold{ \dfrac{dy}{dx}   =  \sec(x). \tan(x)}}} \\

▪︎ Hence, Option (d) is correct.


Anonymous: Perfect ✌
amitkumar44481: Nice :-)
Anonymous: Thank you Ak14380 :D
Anonymous: Awesome ^•^
Anonymous: Awesomee (:
Similar questions