Math, asked by mickynaru2, 4 days ago

find the derivative of the following function using the definition.
 \frac{1}{3x + 2}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \dfrac{1}{3x + 2}  \\

So,

\rm \: f(x + h) = \dfrac{1}{3(x + h) + 2}  = \dfrac{1}{3x + 3h + 2}  \\

Now, By definition of differentiation, we have

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\rm \dfrac{f(x + h) - f(x)}{h}

So, on substituting the values, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm \bigg(\dfrac{1}{3x + 3h + 2}  - \dfrac{1}{3x + 2}  \bigg) \dfrac{1}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm \bigg(\dfrac{3x + 2 - (3x + 3h + 2)}{(3x + 3h + 2)(3x + 2)} \bigg) \dfrac{1}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm \bigg(\dfrac{3x + 2 - 3x  -  3h  -  2}{(3x + 3h + 2)(3x + 2)} \bigg) \dfrac{1}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm \bigg(\dfrac{-  3h}{(3x + 3h + 2)(3x + 2)} \bigg) \dfrac{1}{h}  \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm \bigg(\dfrac{-  3}{(3x + 3h + 2)(3x + 2)} \bigg)   \\

\rm \:  =  \: \dfrac{ - 3}{(3x + 2)(3x + 2)}  \\

\rm \:  =  \: \dfrac{ - 3}{ {(3x + 2)}^{2} }  \\

Hence,

\rm\implies \: \boxed{ \rm{ \:\: \dfrac{d}{dx}\bigg( \dfrac{1}{3x + 2}\bigg) \: =  \: \dfrac{ - 3}{ {(3x + 2)}^{2} }   \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions