Math, asked by Anonymous, 2 months ago

find the derivative of the following :-

 \bigstar \boxed {\sf y =  \dfrac{ {x}^{ \frac{7}{2} }  +  {x}^{ \frac{1}{3} }  + x + 1}{ {x}^{ \frac{1}{2} } } } \bigstar
Spammers Get the hell out of here !

Seeking on expert's help ! ​

Answers

Answered by AestheticSky
58

 \bigstar \large \purple{ \pmb{ \sf Question:- }}

find the derivative of the following :-

 \bigstar \boxed {\sf y = \dfrac{ {x}^{ \frac{7}{2} } + {x}^{ \frac{1}{3} } + x + 1}{ {x}^{ \frac{1}{2} } } } \bigstar

\bigstar \large \purple{ \pmb{ \sf Required\:Answer:- }}

❍ We can write the given equation as :-

 :  \implies  \sf y =  \dfrac{x ^{ \frac{7}{2} } }{ {x}^{ \frac{1}{2} } }  +  \dfrac{ {x}^{ \frac{1}{3} } }{ {x}^{ \frac{1}{2} } }  +  \dfrac{ {x} }{ {x}^{ \frac{1}{2} } }  +  \dfrac{1}{ {x}^{ \frac{1}{2} } }

  : \implies \sf y =  {x}^{3}  +  {x}^{ \frac{ - 1}{6} }  +  {x}^{ \frac{1}{2} }  +  {x}^{ \frac{ - 1}{2} }

Now, we are going to find the derivative of the above equation ...

❍ We already know that :-

For any equation like \sf x^{n}, where n is a real no.

 \leadsto \underline{ \boxed {\pink{ \sf  \frac{dy}{dx}  = n. {x}^{n - 1}  }}} \bigstar

❍ Let's calculate the derivative of this equation !

 :  \implies \sf  \dfrac{dy}{dx}  = 3 {x}^{3 - 1}    -   \dfrac{  1}{6}  {x}^{ \frac{ - 1}{6} - 1 }  +  \dfrac{1}{2}  {x}^{ \frac{1}{2} - 1 }   -  \frac{1}{6}  {x}^{ \frac{ - 1}{2} - 1 }

 :  \implies  \boxed {\pink{{\sf  \dfrac{dy}{dx}  = 3 {x}^{2}  -  \dfrac{1}{6}  {x}^{ \frac{ - 7}{6} }  +  \dfrac{1}{2}  {x}^{ \frac{ - 1}{2} }  -  \dfrac{1}{2}  {x}^{ \frac{ - 3}{2} } }}} \bigstar

And we are done :D


Anonymous: Good!
Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:y = \dfrac{ {\bigg(x\bigg) }^{\dfrac{7}{2}}  + {\bigg(x\bigg) }^{\dfrac{1}{3} } + x + 1}{{\bigg(x\bigg) }^{\dfrac{1}{2} }}

\rm :\longmapsto\:y = \dfrac{{\bigg(x\bigg) }^{\dfrac{7}{2} }}{{\bigg(x\bigg) }^{\dfrac{1}{2} }}  + \dfrac{{\bigg(x\bigg) }^{\dfrac{1}{3} }}{{\bigg(x\bigg) }^{\dfrac{1}{2} }}  + \dfrac{x}{{\bigg(x\bigg) }^{\dfrac{1}{2} }}  + \dfrac{1}{{\bigg(x\bigg) }^{\dfrac{1}{2} }}

We know,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \sf{ \:  {x}^{m} \div  {x}^{n} =  {x}^{m - n}   }}}

So using this, we get

\rm :\longmapsto\:y = {\bigg(x\bigg) }^{\dfrac{7}{2} - \dfrac{1}{2}} + {\bigg(x\bigg) }^{\dfrac{1}{3} - \dfrac{1}{2}} + {\bigg(x\bigg) }^{1 - \dfrac{1}{2} } + {\bigg(x\bigg) }^{ - \dfrac{1}{2} }

\rm :\longmapsto\:y = {\bigg(x\bigg) }^{\dfrac{7 - 1}{2}} + {\bigg(x\bigg) }^{\dfrac{2 - 3}{6}} + {\bigg(x\bigg) }^{\dfrac{2 - 1}{2} } + {\bigg(x\bigg) }^{ - \dfrac{1}{2} }

\rm :\longmapsto\:y = {\bigg(x\bigg) }^{\dfrac{6}{2}} + {\bigg(x\bigg) }^{\dfrac{ - 1}{6}} + {\bigg(x\bigg) }^{\dfrac{1}{2} } + {\bigg(x\bigg) }^{ - \dfrac{1}{2} }

\rm :\longmapsto\:y = {\bigg(x\bigg) }^{3} + {\bigg(x\bigg) }^{\dfrac{ - 1}{6}} + {\bigg(x\bigg) }^{\dfrac{1}{2} } + {\bigg(x\bigg) }^{ - \dfrac{1}{2} }

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx} {\bigg(x\bigg) }^{3} +\dfrac{d}{dx} {\bigg(x\bigg) }^{\dfrac{ - 1}{6}} + \dfrac{d}{dx}{\bigg(x\bigg) }^{\dfrac{1}{2} } + \dfrac{d}{dx}{\bigg(x\bigg) }^{ - \dfrac{1}{2} }

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \boxed{ \sf{ \: \dfrac{d}{dx} {x}^{n}  = n {x}^{n - 1} }}}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 3 {x}^{2} - \dfrac{1}{6}{\bigg(x\bigg) }^{ - \dfrac{1}{6}  - 1} + \dfrac{1}{2}{\bigg(x\bigg) }^{\dfrac{1}{2} - 1 } - \dfrac{1}{2}{\bigg(x\bigg) }^{ - \dfrac{1}{2}  - 1}

\rm :\longmapsto\:\dfrac{dy}{dx} = 3 {x}^{2} - \dfrac{1}{6}{\bigg(x\bigg) }^{ - \dfrac{7}{6}} + \dfrac{1}{2}{\bigg(x\bigg) }^{ - \dfrac{1}{2} } - \dfrac{1}{2}{\bigg(x\bigg) }^{ - \dfrac{3}{2}}

Additional Information :-

 \red{ \boxed{ \sf{ \dfrac{d}{dx}k\:  = 0}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}x\:  = 1}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx} {e}^{x} \:  =  {e}^{x} }}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx} {a}^{x} \:  =  {a}^{x} loga \:  \: where \: a > 0}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}logx\:  =  \frac{1}{x} }}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx} log_{a}(x) \:  =  \frac{1}{x \: loga}  \:  \:  \: where \: a > 0}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}sinx\:  = cosx}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}cosx\:  =  -  \: sinx}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}tanx\:  =   {sec}^{2} x}}}

 \red{ \boxed{ \sf{ \dfrac{d}{dx}cotx\:  =    -  \: {cosec}^{2} x}}}


Anonymous: Ãwēsømê!
Similar questions