Math, asked by sarojkumarpradhan124, 1 month ago

find the derivative of x^2 cosec^-1 (1/lnx)​

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  {x}^{2}  \cosec^{ - 1}  \bigg( \frac{1}{  \ln(x) }  \bigg) \\

 \implies \: y =  {x}^{2}  \sin^{ - 1}  (  \ln(x) ) \\

 \implies \:  \frac{dy}{dx}  =  2x \sin^{ - 1}  (  \ln(x) )  +  {x}^{2}. \frac{1}{ \sqrt{1 - (  \ln(x))^{2}  } } . \frac{d}{dx}( \ln(x))  \\

 \implies \:  \frac{dy}{dx}  =  2x \sin^{ - 1}  (  \ln(x) )  +  {x}^{2}. \frac{1}{ \sqrt{1 - (  \ln(x))^{2}  } } . \frac{1}{x} \\

 \implies \:  \frac{dy}{dx}  =  2x \sin^{ - 1}  (  \ln(x) )  + x. \frac{1}{ \sqrt{1 - (  \ln(x))^{2}  } } \\

Hence,

 \tt \red{  \frac{dy}{dx}  =  2x \sin^{ - 1}  (  \ln(x) )  + \frac{x}{ \sqrt{1 - (  \ln(x))^{2}  } } }\\

Similar questions