Math, asked by Anonymous, 1 month ago

Find the derivative of x^x​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {x}^{x}

Let assume that

\rm :\longmapsto\: y = {x}^{x}

Taking log on both sides, we get

\rm :\longmapsto\: logy =log {x}^{x}

can be rewritten as

\rm :\longmapsto\: logy =x \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx}logy =\dfrac{d}{dx}x \: logx \:

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

and

\boxed{ \tt{ \: \dfrac{d}{dx}uv \:  =  \: v\dfrac{d}{dx}u \:  +  \: u\dfrac{d}{dx}v \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = x \dfrac{d}{dx}logx \: +  \:  logx \dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = x  \times \dfrac{1}{x} \: +  \:  logx  \times 1

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} = 1 \: +  \:  logx

\bf\implies \:\dfrac{dy}{dx} = y(1 + logx)

\bf\implies \:\dfrac{dy}{dx} =  {x}^{x} (1 + logx)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Short Cut Trick :-

\boxed{ \tt{ \: \dfrac{d}{dx} {f(x)}^{g(x)} =  {f(x)}^{g(x)}\bigg[\dfrac{g(x)}{f(x)}f'(x) + log[f(x)]g'(x) \bigg]}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions
English, 9 months ago