find the derivative of x³+4x²+3x+2 with respect to x
Answers
Answered by
9
To find :
The derivative of the function :-
Solution :
We know the formula for , Derivative by first principle i.e,
Now using the above equation and substituting the values in it, we get :
((x³ + h³ + 3x²h + 3xh²) + 4(x² + 2xh + h²) + 3(x + h) + 2 - (x³ + 4x² + 3x + 2)/h
(x³ + h³ + 3x²h + 3xh² + 4x² + 8xh + h² + 3x + 3h + 2 - x³ - 4x² - 3x - 2)/h
((x³ - x³) + h³ + 3x²h + 3xh² + (4x² - 4x²) + 8xh + h² + (3x - 3x) + 3h + (2 - 2))/h
Hence the derivative of
is
Similar questions
Math,
3 months ago
Science,
3 months ago
Math,
6 months ago
Social Sciences,
6 months ago
Physics,
11 months ago