Math, asked by Anonymous, 2 months ago

Find the derivative of : x⁴(5 sin x – 3 cos x)

wrong=report​

Answers

Answered by SparklingBoy
38

 \color{magenta}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \:  TO  \:  \: FIND  \:  \:  \:  \maltese }}}}

  \large\mathfrak{Derivative \:  \:  of } \\    \bf{x}^{4} (5sinx - 3cosx)

 \color{orange}\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: IMPORTANT \:  \:  POINTS \:  \:  \:  \maltese }}}} \\  \\  \bigstar 1. \:  \:  \: \underline \mathcal{PRODUCT \:  \:  RULE} \\  \\  \bf\frac{d}{dx} (uv)  = u \frac{d}{dx} v + v \frac{d }{dx}u \\  \\   \bigstar2. \:  \:  \:  \bf\frac{d}{dx} sinx = cosx \\  \\  \bigstar3. \:  \:  \: \bf  \frac{d}{dx} cosx =  - sinx

 \color{red}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \:  \: SOLUTION\:  \:  \:  \maltese }}}}

 \bf \frac{d}{dx}  \: x {}^{4} (5sinx - 3cosx) \\  \\  =  \sf  {x}^{4}  \frac{d}{dx} (5sinx - 3cosx) +   \sf  (5sinx - 3cosx) \frac{d}{dx}  {x}^{4}    \\  ( \bf \because product \: rule)

 = \sf  {x}^{4} ( \frac{d}{dx}5sinx -   \frac{d}{dx}3cosx) \\  \sf + (5sinx - 3cosx)\frac{d}{dx}{x}^{4} \\  \\  = \sf  x {}^{4}  \{5cosx - ( - 3sinx) \} \\  +  \sf(5sinx - 3cosx) {4x}^{3}  \\  \\   =  \sf  x {}^{4}  \{5cosx  + 3sinx\}   +  \sf(5sinx - 3cosx) {4x}^{3}  \\  \\  \sf = 5 {x}^{4}cosx + 3 {x}^{4}  sinx + 20 {x}^{3} sinx - 12 {x}^{3} cosx\\ \\ \bf = {x}^{3}[5xcosx + 3 {x} sinx + 20  sinx - 12 cosx]

Which is the required Answer

Answered by BrainlyIshu
19

Solution :

{{See Attachment And Get The Complete Solution}}

Attachments:
Similar questions