Math, asked by ashutoshbothe2366, 1 month ago

find the derivatives of the function y= xsinx/x+sinx​

Answers

Answered by richapariya121pe22ey
4

Step-by-step explanation:

y =  \frac{x \sin \: x}{x +  \sin \: x }  \\  \frac{dy}{dx}  =  \frac{(x +  \sin \: x) \frac{d}{dx} (x \sin \: x) -(x \sin \: x ) \frac{d}{dx}(x +  \sin \: x) }{(x +  \sin \: x)^{2} }  \\  =  \frac{(x +  \sin \: x)(x \cos \: x +  \sin \: x) - (x \sin \: x)(1 +  \cos \: x)  }{(x +  \sin \: x)^{2}}  \\  =   \frac{ {x}^{2}  \cos \: x + x \sin \: x + x \sin \: x \cos \: x +  { \sin }^{2} x - x \sin \: x  - x \sin \: x \cos \: x      }{(x +  \sin \: x)^{2}}   \\  =  \frac{ {x}^{2} \cos \: x +  { \sin}^{2}x  }{(x +  \sin \: x)^{2}}  \\

Similar questions