Math, asked by PragyaTbia, 1 year ago

Find the derivatives w.r.t.x:
\rm \frac{1}{\cos x}+3^{x+5}-\frac{4}{\log_{x} 5}

Answers

Answered by hukam0685
0
we know that
 \frac{1}{cos \: x} = sec \: x \\ \\ log_{x}(5) = \frac{log \: 5}{log \: x} \\ \\
So for derivatives

 \frac{d(sec \: x)}{dx} = sec \: x \: tan \: x \\ \\ \frac{d( {3}^{(x + 5))} }{dx} = {3}^{(x + 5)} log \: 3 \: \: (1) \\ \\ \frac{d}{dx} ( \frac{log \:x }{log \: 5} ) \\ = ( \frac{1 }{log \: 5} ) \frac{d}{dx} (log\:x) =  = \frac{1}{x(log \: 5) } \\ \\
put all these derivatives in one expression for final answer

 \frac{d}{dx} \bigg(\frac{1}{\cos x}+3^{x+5}-\frac{4}{\log_{x} 5}\bigg) \\\\= sec \: x \: tan \: x + {3}^{(x + 5)} log \: 3 - \frac{4}{x(log \: 5) } \\ \\
Hope it helps you.
Similar questions