Math, asked by PragyaTbia, 1 year ago

Find the derivatives w.r.t.x:
\rm x^{7} + 7^{x} + 7^{7}

Answers

Answered by Anonymous
1
HOPE IT HELPS U ✌️✌️✌️
Attachments:
Answered by hukam0685
0
We know that,differentiation of

\frac{d( {a}^{x}) }{dx} = {a}^{x} log(a) \\ \\  \frac{d( {x}^{n}) }{dx} = n {x}^{n - 1} \\ \\  \frac{d( {a}^{a}) }{dx} = 0 \\  \\
So,

 \frac{d}{dx}( \rm x^{7} + 7^{x} + 7^{7}) \\  \\  = >   \frac{d( {x}^{7}) }{dx}  + \frac{d( {7}^{x}) }{dx} + \frac{d( {7}^{7}) }{dx} \\  \\  = 7 {x}^{6}  +  {7}^{x}  log(7)  + 0 \\  \\ \frac{d}{dx}( \rm x^{7} + 7^{x} + 7^{7})=  7 {x}^{6}  +  {7}^{x}  log(7)  \\  \\
Hope it helps you.
Similar questions