Math, asked by hiiguys64, 8 months ago

Find the difference between 4/9 and 5/12 ​

Answers

Answered by Anonymous
18

 \large\tt\green {Solution:-}

Given \: fractions \: are \:   \dfrac{4}{9}  \: and \: \dfrac{5}{12} .

LCM \: of \: 9 \: and \: 12 = 3 \times 3 \times 4 = 36.

Now, \:  \dfrac{4}{9}  =  \dfrac{4 \times 4}{9 \times 4}  =  \dfrac{16}{36}  \\ and ,  \:  \dfrac{5}{12}  =  \dfrac{5 \times 3}{12 \times 3}  =  \dfrac{15}{36.}

Clearly, \:  \dfrac{16}{36}  >  \dfrac{15}{36}

∴ \dfrac{4}{9} >  \dfrac{5}{12} .

Now, \:  \dfrac{4}{9}  -  \dfrac{5}{12}  =  \dfrac{16}{36}  -  \dfrac{15}{36}  =  \dfrac{16 - 15}{36}  =  \dfrac{1}{36.}

 \large\tt\green {Additional\: information:-}

  • Sum  \: of  \: like \:  fractions  =  \dfrac{sum \: of \: numerators}{common \: denominator}

  • Difference \:  of  \: like \:  fractions  =  \dfrac{difference \: of \: numerators}{common \: denominator}

  • When \:  we \:  find \:  the \:  difference \:  of \\ two \:  unlike  \: fractions, \: we \:  convert  \\  them \:  into \:  equivalent \:  fractions \\ with \:  a \:  denominator \:  equal  \: to  \: the  \: LCM  \\ of \:  the \:  denominators \:  of \:  the \:  given \:  fractions. \\  Now,  \: these \:  like \:  fractions  \: can \:  be  \: subtracted \\ as  \: given  \: above.
Similar questions