Math, asked by ankit077777, 10 months ago

Find the difference between compound interest and simple interest on rs12000 in 1×1/2 years at 10% compounded half yearly​

Answers

Answered by Anonymous
3

Answer:

12060 Rs

Step-by-step explanation:

P= Rs 12000

R =10 %

T= 1*1/2 years

CI ( time = fraction) = P* (1+r/100)^whole part of the time*(1+fraction*R/100)

   = 12000 (1+10/100)1  *  (1+1/2*10/100)

   = 12000(110/100) * (1+5/100)

   =120 * 110 *105 /100

   =12 * 11 * 105

   =13860 Rs

SI = PTR/100

   = 1600*3/2*10/100

   = 1800 Rs

CI - SI

= 12060 Rs

Hope this helps .

Please mark me as the brainliest .

Thank you :):)

Answered by Sagar9040
63

{\huge{\boxed{\tt{\color{red}{Aɴꜱᴡᴇʀ}}}}}

➜ \large \tt{} \purple{C.I-S.I = 91.5 \: rupees}

________________________________________________

\huge \sf {\orange {\underline {\pink{\underline {Gɪᴠᴇɴ}}}}}

  • ✭ Principal (p) = 12000
  • ✭ Time (t) = \tt1\frac{3}{2}1
  • ✭ Rate (r) = 4%

______

\begin{gathered}\Large{\purple{\underline{\textsf{\textbf{To Find\::}}}}} \\ \end{gathered}

☞ The difference between the simple interest and the compound interest.

__________________________________________

\begin{gathered}\orange\bigstar\:{\underline{\pink{\boxed{\bf{\gray\:Steps}}}}}}}}\:\green\bigstar \\ \end{gathered}

❍ First let's find the value of simple interest. And it is given by,\large \tt{}S.I = \frac{p \times r \times t}{100}

Substituting our given values,

\large \tt \leadsto{}S.I = \frac{12000 \times 10\times 3}{100 \times 2} \\ \\ \large \tt \leadsto{}S.I = \cancel\frac{360000}{200} \\ \\ \large\tt \leadsto{ \pink{1800\: rupees}}

➤ So next let's find the value of A. And its given by,

\large \tt{}A = p(1 + \frac{ \frac{r}{2} }{100} {)}^{2t}

➤ Substituting the given values,

\begin{gathered} \dashrightarrow \large \tt{}A = 12000(1 + \frac{ \frac{10}{2} }{100} {)}^{2( \frac{3}{2} )} \\ \\ \tt \large \dashrightarrow12000(1 + 0.05 {)}^{3} \\ \\ \tt \large \dashrightarrow12000 \times 1.157625 \\ \\ \tt \large \dashrightarrow{ \red{A = 13891 .5\: rupees}}\end{gathered}

➤ So now we can find the compound interest with the use of A-p

\begin{gathered}\large \tt{} \longrightarrow{}C.I = 13891.5 - 12000\\ \\ \tt \large \longrightarrow{} \pink{C.I =1891.5 \: rupees}\end{gathered}

➤ Now we can find their difference by,

\begin{gathered}\large \tt \hookrightarrow C.I-S.I = 1891.5- 1800 \\ \\ \large \tt \orange{\hookrightarrow{}C.I-S.I =91.5 \: rupees}\end{gathered}

Similar questions