Math, asked by ankit077777, 11 months ago

Find the difference between compound interest and simple interest on rs12000 in 1×1/2 years at 10% compounded half yearly​

Answers

Answered by BrainlyConqueror0901
19

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Difference=91.5\:rupees}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies Principal(p) = 12000\:rupees \\  \\  \tt:  \implies Time(t) =  \frac{3}{2}  \: year \\  \\   \tt:  \implies Rate\%(r) = 10\% \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies C.I- S.I=?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies S.I=  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies S.I=  \frac{12000 \times 10 \times 3}{2 \times 100}  \\  \\ \tt:  \implies S.I = 120 \times 15\\  \\  \green{\tt:  \implies S.I = 1800 \: rupees} \\  \\  \bold{As \: we \: know \: that} \\ \tt:  \implies  A= p(1 +  \frac{ \frac{r}{2} }{100} ) ^{2t}  \\  \\ \tt:  \implies A = 12000 \times (1 +  \frac{10}{2 \times 100} )^{3}  \\  \\ \tt:  \implies A= 125000 \times (1 + 0.05)^{3}  \\  \\ \tt:  \implies A = 12000 \times (1.05)^{3}  \\  \\ \tt:  \implies A= 12000 \times 1.157625 \\  \\  \green{\tt:  \implies A= 13891.5\: rupees} \\  \\  \bold{For \: compound \: interest :  }\\ \tt:  \implies C.I= A - p \\  \\ \tt:  \implies C.I= 13891.5 - 12000\\  \\  \green{\tt:  \implies C.I= 1891.5 \: rupees} \\  \\  \bold{For \: Difference : } \\ \tt:  \implies Difference= C.I - S.I\\  \\ \tt:  \implies Difference = 1891.5 - 1800 \\  \\  \green{\tt:  \implies Difference= 91.5 \: rupees}

Answered by ғɪɴɴвαłσℜ
4

Aɴꜱᴡᴇʀ

 \large \tt{} \purple{C.I-S.I = 91.5 \: rupees}

__________________

Gɪᴠᴇɴ

✭ Principal (p) = 12000

✭ Time (t) = \tt1\frac{3}{2} years

✭ Rate (r) = 4%

__________________

ᴛᴏ ꜰɪɴᴅ

☞ The difference between the simple interest and the compound interest.

__________________

Sᴛᴇᴘꜱ

❍ First let's find the value of simple interest. And it is given by,

 \large \tt{}S.I =  \frac{p \times r \times t}{100}

Substituting our given values,

\large \tt \leadsto{}S.I =  \frac{12000 \times 10\times 3}{100 \times 2}  \\  \\  \large \tt \leadsto{}S.I =   \cancel\frac{360000}{200}  \\  \\   \large\tt \leadsto{ \pink{1800\: rupees}}

➤ So next let's find the value of A. And its given by,

 \large \tt{}A = p(1 +  \frac{ \frac{r}{2} }{100}  {)}^{2t}

➤ Substituting the given values,

 \dashrightarrow \large \tt{}A = 12000(1 +  \frac{ \frac{10}{2} }{100}  {)}^{2( \frac{3}{2} )}  \\  \\ \tt \large \dashrightarrow12000(1 + 0.05 {)}^{3}  \\  \\ \tt \large \dashrightarrow12000 \times 1.157625 \\  \\  \tt \large \dashrightarrow{ \red{A = 13891 .5\: rupees}}

➤ So now we can find the compound interest with the use of A-p

\large \tt{} \longrightarrow{}C.I = 13891.5 - 12000\\  \\  \tt \large \longrightarrow{} \pink{C.I =1891.5 \:  rupees}

➤ Now we can find their difference by,

\large \tt \hookrightarrow C.I-S.I = 1891.5- 1800 \\  \\  \large \tt  \orange{\hookrightarrow{}C.I-S.I =91.5 \: rupees}

__________________________________________

Similar questions