Math, asked by Anonymous, 7 months ago

Find the difference between Compound interest and simple interest on ₹12000 and in 1 whole 1 upon years at 10% compounded half yearly​

Answers

Answered by DüllStâr
19

Question:

Find the difference between Compound interest and simple interest on ₹12000 and in 1 whole 1 upon years at 10% compounded half yearly

Given:

P=₹12000

T = 1 \dfrac{1}{2}

R = 10\%

\blue{part </strong><strong>\</strong><strong>:</strong><strong>1:}

To find SI:

formula \: used:  \\ </strong><strong>S</strong><strong>i =  \dfrac{p \times r \times t}{100}

Step by step explanation:

Step 1:

</strong><strong>S</strong><strong>i =  \dfrac{12000 \times3 \times  10 }{100}

Step 2:

</strong><strong>S</strong><strong>i =  600 \times 3

Step 3:

</strong><strong>S</strong><strong>i = ₹18000</strong><strong>✓</strong><strong>

\blue{part \:  2:}

To find CI:

Formula used:

</strong><strong>C</strong><strong>i =p [ {(1 +  \dfrac{r}{100})}^{t}  - 1 ]

Step by step explanation:

Step 1:

</strong><strong>C</strong><strong>i =12000 [ {(1 +  \dfrac{5}{100})}^{3}  - 1 ]

Step 2:

</strong><strong>C</strong><strong>i = 12000[( \dfrac{9261}{8000} ) - 1]

Step 3:

</strong><strong>C</strong><strong>i = 12000( \dfrac{9261 - 8000}{8000} )

Step 4:

</strong><strong>C</strong><strong>i = 12000( \dfrac{1261}{8000} )

Step 5:

</strong><strong>C</strong><strong>i =  \dfrac{12000 \times 1261}{8000}

Step 6:

</strong><strong>C</strong><strong>i =  \dfrac{3783}{2}

Step 7:

</strong><strong>C</strong><strong>i =₹ 1891.5</strong><strong>✓</strong><strong>

\blue{</strong><strong>part\</strong><strong>:</strong><strong> 3:}

To find difference of ci and si:

Formula used:

</strong><strong>C</strong><strong>i - </strong><strong>S</strong><strong>i

Step 1:

 = ₹1819.5 - ₹1800

Step 2:

</strong><strong>\red{</strong><strong> = ₹91.5✓</strong><strong>}</strong><strong>

________________________________

with regards!

\huge{★Dull Star★}

Similar questions