Find the difference between the compound interest on 25000 at 16% pper annum for six months compouned half-yearly and quaterly respectively. Which option is better?
Answers
Answered by
1
Given Principal = P = Rs. 25000 R = 16% p.a Time = n = 6 month= 1/2 year
for half year compounding CI1 = P{(1+R/200)2n -1} = 25000 * {( 1+16/200)2*1/2 -1}
or CI1= 25000*{(1+2/25)-1} = 25000*{(27/25)-1} = 25000*2/25 = 2000
Similarily for compounding quarterly CI2= P{(1+R/400)4n-1} = 25000 * {( 1+16/400)4*1/2-1}
or CI2= 25000 * {( 1+1/25)2-1} = = 25000 * {( 26/25)2-1} = = 25000 * (262-252)/252
or CI2 = 25000 * (676 -625)/625 = 40*51 = 2040
CI2-CI1 = 2040-2000 = Rs 40/- (Ans)
for half year compounding CI1 = P{(1+R/200)2n -1} = 25000 * {( 1+16/200)2*1/2 -1}
or CI1= 25000*{(1+2/25)-1} = 25000*{(27/25)-1} = 25000*2/25 = 2000
Similarily for compounding quarterly CI2= P{(1+R/400)4n-1} = 25000 * {( 1+16/400)4*1/2-1}
or CI2= 25000 * {( 1+1/25)2-1} = = 25000 * {( 26/25)2-1} = = 25000 * (262-252)/252
or CI2 = 25000 * (676 -625)/625 = 40*51 = 2040
CI2-CI1 = 2040-2000 = Rs 40/- (Ans)
Answered by
0
Answer:
Attachments:
Similar questions
Hindi,
7 months ago
English,
7 months ago
Math,
7 months ago
English,
1 year ago
Social Sciences,
1 year ago