Math, asked by samyaduvanshi, 5 months ago

Find the difference between the simple interest and compound interest on ₹20,000 . at 10% p.a compound anullay for 3 years​

Answers

Answered by MoodyCloud
95

Answer:

  • Difference is ₹620.

Step-by-step explanation:

Given :-

  • Principal is ₹20000.
  • Rate of interest is 10%.
  • Time period is 3 years.

To find :-

  • Difference between the simple interest and compound interest.

Solution :-

  • For difference first we will find simple interest and compound interest.

So,

We know,

 \boxed{\bold{Simple \: interest = \dfrac{P \times r \times t}{100}}}

Where,

  • P is principal, r is rate of interest and t is time period.

Put all values :

 \sf \longrightarrow Simple \: interest = \dfrac{20000 \times 10 \times 3}{100} \\ \\

 \sf \longrightarrow Simple \: interest = \dfrac{600000}{100} \\ \\

 \longrightarrow \purple{\boxed{\sf \bold{Simple \: interest = 6000}}\star}

Thus,

Simple interest is 6000.

  • Interest is compounded annually.

So,

Compound interest = Amount - Principal

Or,

 \boxed{\bold{Compound \:  interest = \Bigg\{ P \bigg( 1 + \dfrac{r}{100} \bigg) ^{n} \Bigg\} - P}}

Put the values :

 \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times \bigg(1 + \dfrac{10}{100} \bigg) ^{3} \Bigg\} - 20000 \\ \\

 \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times \bigg( \dfrac{100 + 10}{100} \bigg) ^{3} \Bigg\} - 20000 \\ \\

 \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times \bigg(\dfrac{110}{100} \bigg)^{3} \Bigg\} - 20000 \\ \\

 \sf \longrightarrow Compound \: interest = \Bigg\{20000 \times \dfrac{1331000}{1000000} \Bigg\} - 20000 \\ \\

 \sf \longrightarrow Compound \: interest = \Bigg\{ 20000 \times 1.331 \Bigg\} - 20000 \\ \\

 \sf \longrightarrow Compound \: interest = 26620 - 20000 \\ \\

 \longrightarrow \red{\boxed{\sf \bold{Compound \: interest = 6620}}\star} \\ \\

Thus,

Compound interest is 6620

Now,

Difference = Compound interest - Simple interest

 \sf \longrightarrow 6620 - 6000

 \sf \longrightarrow \bold{620}

Therefore,

Difference is 620.

Answered by VinCus
52

▪︎Given:

➨Principal (P) = ₹ 20,000

➨Time (t) = 3 years

➨Rate of interest (R) = 10 %

__________________________________

▪︎To Find :

➨What is the Difference between Compound Interest and Simple Interest

__________________________________

▪︎Solution:-

To Find Simple interest,

➨Applying simple interest formula,

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{Simple \:Interest = \frac{P \times  R \times t}{100}  }}}}}

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{Simple \:Interest = \frac{20000 \times  10 \times 3}{100}  }}}}}

 \longrightarrow \bigstar{ \underline{ \boxed{ \boxed{ \bf{ \red{Simple \:Interest = {6000}  }}}}}}\bigstar

To Find Compound Interest,

➨Applying Compound Interest formula,

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{ Compound\:Interest = P \: (1 +  \frac{r}{100}) {}^{n}  -   P   }}}}}

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{ Compound\:Interest = 20000 \: (1 +  \frac{10}{100}) {}^{3}   -   20000   }}}}}

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{ Compound\:Interest = 20000   \times (1 +  \frac{10}{100}) {}^{3}   -  20000   }}}}}

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{ Compound\:Interest = 20000   \times ( \frac{10 + 100}{100}) {}^{3}   -  20000   }}}}}

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{ Compound\:Interest = 20000   \times  \frac{1331000}{1000000}   -  20000   }}}}}

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{ Compound\:Interest = 20000   \times {1.331}   -  20000   }}}}}

 \longrightarrow \bigstar{ \underline{ \boxed{ \boxed{ \bf{ \red{ Compound\:Interest = 6620  }}}}}}\bigstar

To Find Difference,

➨Subtract Simple Interest from Compound Interest,

 \longrightarrow{ \underline{ \boxed{ \boxed{ \sf{ Diffrence = 26620 - 20000 }}}}}

 \longrightarrow \bigstar{ \underline{ \boxed{ \boxed{ \bf{ \red{ Diffrence =6620 }}}}}}\bigstar

➨Hence The difference between Compound Interest and Simple Interest is ₹6620.

__________________________________

Similar questions