Math, asked by Rounakpandey, 1 year ago

Find the difference between the simple interest and compound interest on Rs. 4800 for 2 years at 5% per annum compound interest being reckoned annually

Answers

Answered by SANDHIVA1974
2

Question :

Find the difference between the simple interest and compound interest on Rs.4800 for 2 years at 5% per annum, compound interest being reckoned annually.

\begin{gathered}\end{gathered}

Given :

Principle = Rs.4800

Time period = 2 years

Rate of Interest = 5% per annum

\begin{gathered}\end{gathered}

To Find :

Simple Interest

Amount

Compound Interest

Difference between the simple interest and compound interest

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\bf{ S.I = \dfrac{P \times R \times T}{100}}}}}

\longrightarrow\small{\underline{\boxed{\bf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}}}

\longrightarrow\small{\underline{\boxed{\bf{{C.I=A- P}}}}}

\longrightarrow\small{\underline{\boxed{\bf{Difference = C.I - S.I}}}}

⚘ Where :-

➛ S.I = Simple Interest

➛ A = Amount

➛ P = Principle

➛ R = Rate

➛ T = Time

➛ C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

⚘ Finding the simple interest by substituting the values in the formula :-

\dashrightarrow\small{\sf{ S.I = \dfrac{P \times R \times T}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{4800 \times 5 \times 2}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{4800 \times 10}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{48000}{100}}}

\dashrightarrow\small{\sf{ S.I = \cancel{\dfrac{48000}{100}}}}

\dashrightarrow\small{\sf{S.I = Rs.480}}

\longrightarrow\small{\underline{\boxed{\sf{\pink{S.I = Rs.480}}}}}

∴ The simple interest is Rs.480.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding amount by substituting the values in the formula :-

\dashrightarrow\small{\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}

\dashrightarrow\small{\sf{A= 4800\bigg(1 + \dfrac{{5}}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg(\dfrac{(1 \times 100) + (5 \times 1)}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg(\dfrac{100+5}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg(\dfrac{105}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg( \cancel{\dfrac{105}{100}} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{21}{20}} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{21}{20}} \times  \dfrac{21}{20} \bigg)}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{21 \times 21}{20 \times 20}} \bigg)}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{441}{400}} \bigg)}}

\dashrightarrow\small{\sf{A= 4800 \times {\dfrac{441}{400}}}}

\dashrightarrow\small{\sf{A= \cancel{4800} \times {\dfrac{441}{\cancel{400}}}}}

\dashrightarrow\small{\sf{A=12 \times 441}}

\dashrightarrow\small{\sf{A=Rs.5292}}

\longrightarrow\small{\underline{\boxed{\sf{\pink{Amount=Rs.5292}}}}}

∴ The amount is Rs.5292.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding compound interest by substituting the values in the formula :-

\dashrightarrow{\small{\sf{{C.I=A- P}}}}

\dashrightarrow{\small{\sf{{C.I=5292- 4800}}}}

\dashrightarrow{\small{\sf{{C.I=492}}}}

\longrightarrow{\small{\underline{\boxed{\sf{\pink{{C.I=492}}}}}}}

∴ The compound interest is Rs.492.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Now, finding the difference between Compound interest and Simple interest :-

\dashrightarrow\small{\sf{Difference = C.I - S.I}}

\dashrightarrow\small{\sf{Difference = 492- 480}}

\dashrightarrow\small{\sf{Difference = Rs.12}}

\longrightarrow\small{\underline{\boxed{\sf{\pink{Difference = Rs.12}}}}}

∴ The difference between simple interest and compound interest is Rs.12.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Similar questions