Math, asked by Aniketdhayal, 1 year ago

find the direction cosines of the vector i^ +2j^+3k^

Answers

Answered by MaheswariS
29

\textbf{Given vector is $\overrightarrow{i}+2\,\overrightarrow{j}+3\,\overrightarrow{k}$}

\textbf{To find:}

\text{Direction cosines of $\overrightarrow{i}+2\,\overrightarrow{j}+3\,\overrightarrow{k}$}

\textbf{Solution:}

\text{We know that,}

\text{The direction cosines of the vector $\overrightarrow{r}=x\,\overrightarrow{i}+y\,\overrightarrow{j}+z\,\overrightarrow{k}$ is}

\bf(\dfrac{x}{\sqrt{x^2+y^2+z^2}},\dfrac{y}{\sqrt{x^2+y^2+z^2}},\dfrac{z}{\sqrt{x^2+y^2+z^2}})

\text{Then, the direction cosines of $\overrightarrow{i}+2\,\overrightarrow{j}+3\,\overrightarrow{k}$ is}

(\dfrac{1}{\sqrt{1^2+2^2+3^2}},\dfrac{2}{\sqrt{1^2+2^2+3^2}},\dfrac{3}{\sqrt{1^2+2^2+3^2}})

(\dfrac{1}{\sqrt{1+4+9}},\dfrac{2}{\sqrt{1+4+9}},\dfrac{3}{\sqrt{1+4+9}})

(\dfrac{1}{\sqrt{14}},\dfrac{2}{\sqrt{14}},\dfrac{3}{\sqrt{14}})

\therefore\textbf{The direction cosines of $\bf\overrightarrow{i}+2\,\overrightarrow{j}+3\,\overrightarrow{k}$ is $\bf(\dfrac{1}{\sqrt{14}},\dfrac{2}{\sqrt{14}},\dfrac{3}{\sqrt{14}})$}

Similar questions