Math, asked by rishabhdhawan1999, 9 months ago

Find the directional derivative of the function 5x^2y - 5y^2z + 5/2 (z^2x) at (1,1,1) in the direction of the line a = i + 2j +nk which is parallel to a plane 2(x-5)+3(y-4)+(z-3)=0

Answers

Answered by Anonymous
20

Answer:

The unit vector with direction the gradient is:

u=∇f||∇f||.

So you want −u. Comparing two values in your work 815 and 5√8 makes me skeptical.

For the rate of change in direction of −u, we write

D−uf=∇f⋅(−u)=−∇f⋅∇f||∇f||=−||∇f||2||∇f||=−||∇f||.

Answered by supreethacmsl
3

Answer:

cos\theta =  \frac{20}{\sqrt{8974}}

Step-by-step explanation:

What is a directional derivative?

  • Let \phi(x,y,z) be a scalar point function and \vec{a} be a vector inclined at an angle to the direction of ∇\phi.
  • The component of ∇\phi along \vec{a} is called the directional derivative of \phi along \vec{a}.
  • This is denoted by   \frac{\partial{\phi}}{\partial{\vec{a}}}

Let, \phi(x,y,z)= 5x^{2}y-5y^{2}z+\frac{5}{2}z^{2}x

      ∇\phi=  \frac{\partial{\phi}}{\partial{x}} \vec{i}+ \frac{\partial{\phi}}{\partial{y}} \vec{j}+  \frac{\partial{\phi}}{\partial{z}} \vec{k}   - - - - (1)

     

\frac{\partial{\phi}}{\partial{x}}= \frac{\partial{(5x^{2}y-5y^{2}z+\frac{5}{2}z^{2}x)}}{\partial{x}} = 10xy+\frac{5}{2}z^{2} - - - - - - (2)

\frac{\partial{\phi}}{\partial{y}}= \frac{\partial{(5x^{2}y-5y^{2}z+\frac{5}{2}z^{2}x)}}{\partial{y}} = 5x^{2}-10yz - - - - - - (3)

\frac{\partial{\phi}}{\partial{z}}= \frac{\partial{(5x^{2}y-5y^{2}z+\frac{5}{2}z^{2}x)}}{\partial{z}} = -5y^{2}+5zx - - - - - - (4)

Substitute equations (2),(3) & (4), that is, the derivatives in (1)

       \bigtriangledown\phi= (10xy+\frac{5}{2}z^{2})\,\vec{i} \,+ \, (5x^{2}-10yz)\,\vec{j}\,+ \,  (-5y^{2}+5zx)\,\vec{k}

\bigtriangledown\phi_{(1,1,1)} = (10\times1\times1+\frac{5}{2}\times1^{2})\,\vec{i} \,+ \, (5\times1^{2}-10\times1\times1)\,\vec{j}\,+ \,  (-5\times1^{2}+5\times1\times1)\,\vec{k}\\\\\\\bigtriangledown\phi_{(1,1,1)} = (10+\frac{5}{2})\,\vec{i} \,+ \, (5-10)\,\vec{j}\,+ \,  (-5+5)\,\vec{k}\\\\\\\bigtriangledown\phi_{(1,1,1)} = \frac{25}{2}\,\vec{i} \,+ \, -5\,\vec{j}\,+ \,  0\,\vec{k}\\\\\\

|\bigtriangledown\phi|=\sqrt{(\frac{25}{2})^{2} + (-2)^{2}+0^{2}}  = \frac{\sqrt{641}}{2}

Given, a=\vec{i}+2\vec{j}+n\vec{k} is parallel to plane 2(x-5)+3(y-4)+(z-3)=0

Let, \psi=2(x-5)+3(y-4)+(z-3)

      \bigtriangledown\psi=\frac{\partial{\psi}}{\partial{x}} \vec{i}+ \frac{\partial{\psi}}{\partial{y}} \vec{j}+  \frac{\partial{\psi}}{\partial{z}} \vec{k}

\frac{\partial{\psi}}{\partial{x}}= \frac{\partial{(2(x-5)+3(y-4)+(z-3))}}{\partial{x}} = 2\\\\\\\frac{\partial{\psi}}{\partial{y}}= \frac{\partial{(2(x-5)+3(y-4)+(z-3))}}{\partial{y}} = 3\\\\\\\frac{\partial{\psi}}{\partial{z}}= \frac{\partial{(2(x-5)+3(y-4)+(z-3))}}{\partial{z}} = 1\\\\\\

∴  \bigtriangledown\psi = 2\vec{i}+3\vec{j}+\vec{k}

|\bigtriangledown\psi|=\sqrt{(2^{2}+3^{2}+1^{2})}=\sqrt{14}

Now, \bigtriangledown\phi \,.\,\bigtriangledown\psi=|\bigtriangledown\phi||\bigtriangledown\psi| \, cos\theta

 (\frac{25}{2}\,\vec{i} \,+ \, -5\,\vec{j}\,+ \,  0\,\vec{k})(2\vec{i}+3\vec{j}+\vec{k})=|\,\frac{\sqrt{641}}{2} \,|\,|\,\sqrt{14} \,|\,cos\theta

                                   25-15+0=\frac{\sqrt{8974}}{2} cos\theta

                                        10 * \frac{2}{\sqrt{8974}}= cos\theta

                                        cos\theta =  \frac{20}{\sqrt{8974}}

             

(#SPJ3)

Similar questions