Math, asked by pleasesolveit, 1 year ago

Find the discriminant of the quadratic equation
 \sqrt{2} x {}^{2}  + 7x + 5 \sqrt{2 }  = 0

Answers

Answered by rishu6845
1

Answer:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by BrainlyConqueror0901
87

Answer:

\huge{\boxed{\sf{D=9}}}

\huge{\boxed{\sf{ROOTS\:OF\:THIS\:EQN=-\sqrt{2}\:AND\frac{-5}{\sqrt{2}}}}}

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{METHOD-}}}

\huge{\boxed{\sf{QUADRATIC\:FORMULA}}}

 \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0 \\ d =  {b}^{2}  - 4ac \\ d =  {7}^{2} - 4(  \sqrt{2}  \times 5 \sqrt{2} ) \\ d = 49 - 4 \times 10 \\ d = 49 - 40  \\ d = 9 \\ again \\ x =  \frac{ - b +  \sqrt{d} }{2a}  \\x =  \frac{ - 7 +  \sqrt{9} }{2 \sqrt{2} }  \\ x =  \frac{ - 7 + 3}{2 \sqrt{2} }  \\ x =  \frac{ - 4}{2 \sqrt{2} }  \\ x =   - \sqrt{2}  -  -  -  -  - 1st \: root \\ x =  \frac{ - b -  \sqrt{d} }{2a}  \\ x =  \frac{ - 7 - 3}{2 \sqrt{2} }  \\ x =  \frac{ - 10}{2 \sqrt{2} }  \\ x =  \frac{ - 5}{  \sqrt{2}  }  -  -  -  - 2nd \: root

\huge{\boxed{\sf{D=9}}}

\huge{\boxed{\sf{ROOTS\:OF\:THIS\:EQN=-\sqrt{2}\:AND\frac{-5}{\sqrt{2}}}}}

Similar questions