Math, asked by dinesh7162, 1 year ago

find the distanace of the point (1,2) from mid point of the line segment joining the points (6,8) and (5,1 )

Answers

Answered by abhi569
11
First we have to get the mid point of the line segment having points ( 6 , 8 ) and ( 5 , 1 ). If we apply mid point formula,we can get the mid point of the line segment.

<br />Mid \:  Point  \: Formula =( \dfrac{ x_{1} + x_{2}}{2} , \dfrac{y_{1}+y_{2}}{2})

Applying Mid Point Formula ,



Mid  \:  \: point  \:  \: of \:  \: line \:  \:  segment = ( \dfrac{ 6 + 5}{2} , \dfrac{8 +1 }{ 2} ) \\  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =    (\frac{11}{2}  \:   ,  \:   \frac{9}{2} )




Now ,we have to get the distance between the mid point of the line segment and ( 1 , 2 ). There is a formula which is used to measure the the distance between two points, distance formula.


Distance = \sqrt{ (x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}



As  \:  \: the  \:  \: points \:  \:  are \:  \:  ( \dfrac{11}{2},\dfrac{9}{2} )  \:  \: and  \:  \: ( 1 , 2 )<br />
x_{1}= \dfrac{11}{2} \:  \:  \:  \:   \: <br />x_{2} = 1 \\ \\   y_{1}= \dfrac{9}{2}  \:  \:  \:  \:  \:  \:  \:  y_{2} = 2 <br />


Applying distance formula,


 <br />Distance = \sqrt{ ( 1 - \dfrac{ 11}{2}  )^{2} + (2 - \dfrac{9}{2}) {}^{2} } \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{ \frac{81}{4} +  \frac{25}{4}  } \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \sqrt{ \frac{106}{4} } \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{1}{2}  \sqrt{106}  \:  \:  \: units
Similar questions