find the distanc of the image when an object is placed on the principal axis at a distance of 10cm in front of a concave mirror whose radius of curvature is 8cm
Answers
Answered by
4
Answer :
![d_{i} = 6.67 d_{i} = 6.67](https://tex.z-dn.net/?f=d_%7Bi%7D+%3D+6.67)
Explanation :
Mirror Equation
![\frac{1}{f}=\frac{1}{d_{o}} + \frac{1}{d_{i}} \frac{1}{f}=\frac{1}{d_{o}} + \frac{1}{d_{i}}](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7Bf%7D%3D%5Cfrac%7B1%7D%7Bd_%7Bo%7D%7D++%2B+%5Cfrac%7B1%7D%7Bd_%7Bi%7D%7D)
![d_{o} = object distance = 10cm d_{o} = object distance = 10cm](https://tex.z-dn.net/?f=d_%7Bo%7D+%3D+object+distance+%3D+10cm)
![d_{i} = image distance d_{i} = image distance](https://tex.z-dn.net/?f=d_%7Bi%7D+%3D+image+distance)
![f = focal length f = focal length](https://tex.z-dn.net/?f=f+%3D+focal+length)
we know , for a mirror![f = \frac{r}{2} f = \frac{r}{2}](https://tex.z-dn.net/?f=f+%3D+%5Cfrac%7Br%7D%7B2%7D)
![r = radius of curvature r = radius of curvature](https://tex.z-dn.net/?f=r+%3D+radius+of+curvature+)
since
![r = 8cm r = 8cm](https://tex.z-dn.net/?f=r+%3D+8cm)
![f = 4cm f = 4cm](https://tex.z-dn.net/?f=f+%3D+4cm)
substitutin in mirror equation
![\frac{1}{4} = \frac{1}{10} + \frac{1}{d_{i}} \frac{1}{4} = \frac{1}{10} + \frac{1}{d_{i}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D+%3D+%5Cfrac%7B1%7D%7B10%7D+%2B+%5Cfrac%7B1%7D%7Bd_%7Bi%7D%7D)
![\frac{1}{4} - \frac{1}{10} = \frac{1}{d_{i}} \frac{1}{4} - \frac{1}{10} = \frac{1}{d_{i}}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D+-+%5Cfrac%7B1%7D%7B10%7D+%3D+%5Cfrac%7B1%7D%7Bd_%7Bi%7D%7D)
![\frac{5-2}{20} = \frac{1}{d_{i}} \frac{5-2}{20} = \frac{1}{d_{i}}](https://tex.z-dn.net/?f=%5Cfrac%7B5-2%7D%7B20%7D+%3D+%5Cfrac%7B1%7D%7Bd_%7Bi%7D%7D)
![d_{i} = \frac{20}{3} d_{i} = \frac{20}{3}](https://tex.z-dn.net/?f=d_%7Bi%7D+%3D+%5Cfrac%7B20%7D%7B3%7D)
Explanation :
Mirror Equation
we know , for a mirror
since
substitutin in mirror equation
Similar questions