Math, asked by Anonymous, 9 months ago

find the distance between p (a sin theta, a cos theta ) and (a cos theta, minus a sin theta )​

Answers

Answered by Anonymous
2

Step-by-step explanation:

Distance

PQ = √(aCosO - aSinO)² + (-aSinO - aCosO)²

= √(aCosO - aSinO)² + (aCosO + aSinO)²

= √2(a²Cos²O + a²Sin²O)

= √2a²

= √2*a = a√2 unit

Answered by singusonu547
0

Answer:

PQ=√( acos0 - asin0)²+(-asin0-acos0)²

PQ=√(acos0-asion0)²+(asion0+acos0)²

PQ=√(2(a²cos²0+a²sin²0)

PQ=√2(a²(cos²0+sin²0)

{cos²0+cos²0= 1}

PQ=√2(a²)

PQ=√2a

Similar questions