Math, asked by Akbar360, 1 year ago

Find the distance between the following pair of points (a+b,b+c) and (a-b,c-b)

Answers

Answered by mindfulmaisel
112

The distance is 2 b \sqrt{2}

Given:

Points “(a\quad +\quad b,\quad b\quad +\quad c)”and  

(“a\quad -\quad b”,“c\quad -\quad b”)

To find:

“Distance between” the two pair.

Answer:

A (a+b, b+c) and B (a-b, c-d)  

As per the given question  

AB=\sqrt { ({ x }_{ 2 }-{ x }_{ 1 })^{ 2 }+({ y }_{ 2 }-{ y }_{ 1 })^{ 2 } }

We know that,

{ x }_{ 1 }\quad =\quad a\quad +\quad b

{ x }_{ 2 }\quad =\quad a\quad -\quad b

{ y }_{ 1 }\quad =\quad b\quad +\quad c

{ y }_{ 2 }\quad =\quad c\quad -\quad b

\therefore AB=\sqrt{(a-b-a-b)^{2}+(c-b-b-c)^{2}}

=\sqrt{(-2 b)^{2}+(-2 b)^{2}}

=\sqrt{4 b^{2}+4 b^{2}}

=\sqrt{8 b^{2}}

AB=2 b \sqrt{2}

Answered by amitkumaragrasingh
0

Step-by-step explanation:

Distance between points

(

x

1

,

y

1

)

and

(

x

2

,

y

2

)

=

(

x

2

x

1

)

2

+

(

y

2

y

1

)

2

Let's name the points as A(a + b, b + c) and B(a - b, c - b) .

AB =

(

x

2

x

1

)

2

+

(

y

2

y

1

)

2

A

B

2

=

(

a

+

b

(

a

b

)

)

2

+

(

b

+

c

(

c

b

)

)

2

A

B

2

=

4

b

2

+

4

b

2

=

8

b

2

A

B

=

2

2

b

Therefore, the distance between points (a + b, b + c) and (a – b, c – b) is

2

2

b

units.

Similar questions