Math, asked by kaif959, 10 months ago

Find the distance between the following pairs of points :- (a+b,a-b), (b-a, a+b)​

Answers

Answered by vinayrayana
1

Answer:

2√ [a² + b²]

Step-by-step explanation:

Consider those two points as A(x₁, y₁) & B(x₂, y₂)

Given that A = (a+b,a-b) & B = (b-a, a+b)​

We know that the distance between two points is √ [(x₂ - x₁)² + (y₂ - y₁)²]

=> √ [(b - a - a - b)² + (a + b + b - a)²]

=> √ [(-2a)² + (2b)²]

=> √ [4a² + 4b²]

=> √ 4[a² + b²]

=> 2√ [a² + b²]

Answered by ItzShinyQueen13
6

{\mathcal\red{\underline {\underline{Answer:}}}}

\bold\blue{{2\sqrt{({a}^{2}+{b}^{2})}}}

{\mathcal\red{\underline {\underline{Step-by-step\:explanation:}}}}

Here,

(a + b,a - b) = (x1 ,y1) \\ (b - a,a + b) = (x2,y2) \\   \\ As, \:  we  \: know \:  that, \\  distance \:  between  \: pairs =  \sqrt{(x2 - x1)^{2} + (y2 - y1)^{2}  }  \\  \\ ∴The \:  distances  \: between \:  the \:  following  \: pairs \:  of  \: point \\  =   \sqrt{ {(b - a - b - a)}^{2} +  {(a + b - a + b)}^{2}  }  \\  =  \sqrt{( - 2a)^{2} + ( {2b})^{2}  }  \\  =  \sqrt{4 {a}^{2} + 4 {b}^{2}  }  \\  =  \sqrt{4( {a}^{2} +  {b}^{2})  }  \\  =  \sqrt{4}  \times  \sqrt{( {a}^{2} +  {b}^{2})  }  \\  = 2 \sqrt{( {a}^{2}  +  {b}^{2} )}

\bold\green{\sf{\boxed{Hence,\:the\:distance\:between\:the\:following\:pairs\:of\:points\:is\:2\sqrt{({a}^{2}+{b}^{2})}}}}

\\\\

<marquee>  ❤♥❤ I hope you will be helped by this answer.  ❤♥❤   </marquee>

<marquee>  ♥❤♥ Please follow me and mark as brainliest. ♥❤♥  </marquee>

Similar questions