Math, asked by ankushzore22, 4 months ago

find the distance between the lines 3x+2y=5and 6x+2y=6​

Answers

Answered by MяMαgıcıαη
55

\huge\underline{\underline{\sf{ \color{lime}{Answer:-}  }}}

To find :-

x + y

lets solve it ....

6x + \cancel{2} = 6 ....1

3x + \cancel{2} = 5

-ㅤ-ㅤㅤㅤ-

____________

3x = 1

____________

so,

x = \dfrac{1}{3}

Now,

put value of x in eq 1

\implies 6 × \dfrac{1}{3} + 2y = 6

\implies \dfrac{6}{3} + 2y = 6

\implies \cancel{\dfrac{6}{3}} + 2y = 6

\implies 2 + 2y = 6

\implies 2y = 6 - 2

\implies 2y = 4

\implies y = \dfrac{4}{2}

\implies y = \cancel{\dfrac{4}{2}}

\implies y = 2

So,

x + y = \dfrac{1}{3} + 2

x+ y = \dfrac{1\:+\:6}{3}

\therefore x + y = \dfrac{7}{3}

_______________________________________________

SOLVED ♡

Answered by Anonymous
2

\huge\underline{\underline{\sf{ \color{lime}{Answer:-}  }}}

To find :-

x + y

lets solve it ....

6x + \cancel{2} = 6 ....1

3x + \cancel{2} = 5

-ㅤ-ㅤㅤㅤ-

____________

3x = 1

____________

so,

x = \dfrac{1}{3}

Now,

put value of x in eq 1

\implies 6 × \dfrac{1}{3} + 2y = 6

\implies \dfrac{6}{3} + 2y = 6

\implies \cancel{\dfrac{6}{3}} + 2y = 6

\implies 2 + 2y = 6

\implies 2y = 6 - 2

\implies 2y = 4

\implies y = \dfrac{4}{2}

\implies y = \cancel{\dfrac{4}{2}}

\implies y = 2

So,

x + y = \dfrac{1}{3} + 2

x+ y = \dfrac{1\:+\:6}{3}

\therefore x + y = \dfrac{7}{3}

_______________________________________________

SOLVED ♡

Similar questions