Math, asked by alwinsj777, 2 months ago

find the distance between the points (-5,7) and (-1,3)​

Answers

Answered by omk2466
0

Answer:

P≡(−5,7)

Q≡(−1,3)

∴d(P,Q)=

(−5−(−1))

2

+(7−3)

2

∴d(P,Q)=

16+16

∴d(P,Q)=

32

∴d(P,Q)=4

2

Take me to brainlist question

Answered by ItzWhiteStorm
42

The distance between the points is 32 units

Step-by-step explanation:

Given points: (-5,7) and (-1,3)

To find: Distance between the points

Required Formula:

  • Distance between the points = √(x₂ - x₁)² + (y₂ - y₁)²

❍ Let the points be A(x₁,y₁) is (-5,7) and B(x₂,y₂) is (-1,3).

Let's do it,

____________________________________

\\ \dashrightarrow\sf{ AB= \sqrt{ { \bigg(</u></strong><strong><u>-</u></strong><strong><u>1 - ( - 5) \bigg)}^{2} +   {\bigg(3 - 7 \bigg)}^{2}  } } \\ \\ \dashrightarrow\sf{ AB= \sqrt{ { \bigg(</u></strong><strong><u>-</u></strong><strong><u>1 + 5 \bigg)}^{2}  +  { \bigg(3 - 7 \bigg)}^{2} } } \\ \\ \dashrightarrow\sf{ AB=  \sqrt{{ \bigg(</u></strong><strong><u>4</u></strong><strong><u> \bigg)}^{2} +  { \bigg( - 4 \bigg)}^{2}}}\\ \\ \dashrightarrow\sf{ AB=  \sqrt{</u></strong><strong><u>1</u></strong><strong><u>6 + 16}} \\ \\ \dashrightarrow \underline{ \boxed{\frak{ AB =  \sqrt{</u></strong><strong><u>3</u></strong><strong><u>2</u></strong><strong><u>}  \: units}}} \:  \red{ \bigstar} \\  \\

  • Hence,The distance between the points is 32 units.
Similar questions