Math, asked by shubham547, 1 year ago

find the distance between the points A cos theta a sin theta and minus a sin theta minus cos theta

Answers

Answered by kunal289
6

OK I send you later okay
Answered by wifilethbridge
2

Answer:

 AB= \sqrt{2}a

Step-by-step explanation:

A=(x_1,y_1)=(a cos \theta , a sin \theta)

B = (x_2,y_2)=(a sin \theta , -a cos \theta)

Distance formula : d= \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Substitute the values

AB= \sqrt{(a sin \theta-a cos \theta)^2+(-a cos \theta-a sin \theta)^2}

 AB= \sqrt{a^2(sin^2 \theta+cos^2 \theta-2 sin\theta cos \theta )+a^2( cos^2 \theta+ sin^2\theta+2 sin\theta cos \theta)}

 AB= \sqrt{a^2(1-2 sin\theta cos \theta )+a^2( 1+2 sin\theta cos \theta)}

 AB= \sqrt{2}a

Similar questions