Math, asked by ranjansasha, 1 year ago

find the distance between the points (a cos theta,a sin theta) and (-a sin theta ,a cos theta?

Answers

Answered by Ritikraj828
17

 \sqrt{2 {a}^{2} }
Answered by SerenaBochenek
36

Answer:

\text{The distance is }\sqrt2aunits

Step-by-step explanation:

Given the two points having coordinates

(a\cos\theta ,a\sin \theta) and (-a \sin \theta ,a \cos \theta)

we have to find the distance between these two points.

Using distance formula

Distance between the two points having coordinates (x_1,y_1) and (x_2, y_2)

Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Distance between the points (a\cos\theta ,a\sin \theta) and (-a \sin \theta ,a \cos \theta)

Distance=\sqrt{(-a\sin\theta-a\cos\theta)^2+(a\cos\theta-a\sin\theta)^2}

=\sqrt{a^2\sin^2\theta+a^2\cos^2\theta+2a^2\sin\theta\cos\theta+a^2\cos^2\theta+a^2\sin^2\theta-2a^2\sin\theta\cos\theta}

=\sqrt{a^2\sin^2\theta+a^2\cos^2\theta+a^2\cos^2\theta+a^2\sin^2\theta}

=\sqrt{2a^2(\sin^2\theta+\cos^2\theta)}

=\sqrt{2a^2}=\sqrt2aunits

Similar questions