Math, asked by Anonymous, 11 months ago

Find the distance between the points (a sin theta, a cos theta) and (a cos theta, -a sin theta).

Answers

Answered by Abhishek474241
2

\huge\star\underline{\mathcal\color{brown}{HELLO\:MATE}}\star

\color{brown}{HERE\:IS\:YR\:ANS}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\underline\color{Green}{ATTACHMENT}

REFER TO THE ATTACHMENT

\fbox\color{brown}{HOPE\:IT\:HELPS}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\huge{\mathcal{THANKS}}

.

 <marquee >☝️ABHI☝️

Attachments:
Answered by Anonymous
6

SOLUTION

The required distance between the given Points is

 =  >  \sqrt{(a \: cos \theta - a \: sin  \theta) {}^{2}  + ( - a \: sin \theta - a \: cos \theta) {}^{2} }  \\  =  >  \sqrt{ {a}^{2} (cos \theta + sin\theta) {}^{2} + ( - a) {}^{2} (sin \theta + cos \theta) {}^{2}  }  \\  =  >  \sqrt{ {a}^{2} (cos {}^{2} \theta + sin {}^{2} \theta - 2sin \theta \: cos \theta) +  {a}^{2}  (cos {}^{2}  \theta + sin {}^{2}  \theta + 2sin \theta \: cos \theta }  \\  =  >  \sqrt{ {a}^{2} (cos {}^{2} \theta +sin {}^{2} \theta - 2sin \theta cos \theta + cos {}^{2} \theta + sin {}^{2}  \theta  + 2sin \theta \: cos \theta)  }  \\  =  >  \sqrt{ {a}^{2} (2sin {}^{2} \theta + 2cos { }^{2}  \theta) }  \\  =  >  \sqrt{2a {}^{2}(sin {}^{2}  \theta + cos {}^{2}   \theta)}  \\  =  >  \sqrt{2 {a}^{2}.1 }  \\  =  > a \sqrt{2} units

hope it helps ✔️

Similar questions