Physics, asked by hemachandran5630, 11 months ago

Find the distance of the image when an object is placed on the principal axis at a distance of 10 cm in front of a concave mirror of radius 8 cm

Answers

Answered by Anonymous
28

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

Find the distance of the image when an object is placed on the principal axis at a distance of 10 cm in front of a concave mirror of radius 8 cm ?

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • Distance of object from concave mirror (U) = -10 cm
  • Radius of curvature of concave mirror ( R ) = -8 cm = 2F
  • So, F = -8/2 = -4 cm

\Large{\underline{\mathfrak{\bf{Find}}}}

  • Distance of image (V) .

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

\Large{\underline{\mathfrak{\bf{Using\:mirror\:formula}}}}

\red{\boxed{\sf{\orange{\:\dfrac{1}{F}\:=\:\dfrac{1}{U}\:+\:\dfrac{1}{V}}}}}

Substitute value of U and F in above equation ,

:\implies\sf{\:\dfrac{1}{V}\:+\:\dfrac{1}{-10}\:=\:\dfrac{1}{-4}} \\ \\ :\implies\sf{\:\dfrac{1}{V}\:=\:-\:\dfrac{1}{4}\:+\:\dfrac{1}{10}} \\ \\ :\implies\sf{\:\dfrac{1}{V}\:=\:\dfrac{-10+4}{40}} \\ \\ :\implies\sf{\:\dfrac{1}{V}\:=\:\dfrac{-14}{40}} \\ \\ :\implies\sf{\:V\:=\:\dfrac{-40}{14}} \\ \\ :\implies\sf{\red{\:V\:=\:\dfrac{-20}{7}\:cm}}

\Large{\underline{\mathfrak{\bf{Thus}}}}

  • Distance of image (V ) = -20/7 cm

When, the image distance is negative , the image is behind the mirror .

So, the image is virtual and upright.

Answered by Anonymous
19

Given

  1. Distance from mirror = -10cm
  2. radius=-8cm
  3. f=-8/2=-4

TO FIND,

DISTANCE OF IMAGE=?

\rule{300}2

Solution→

\frac{1}{v}+\frac{1}{-10}=\frac{1}{-4}\\\frac{1}{v}=\frac{-10+4}{40}\\\frac{1}{v}=\frac{-14}{40}\\v=\frac{-40}{14}\\v=\frac{-20}{7}

Similar questions