Math, asked by janhavi5354, 1 year ago

Find the distance of the point (1,-2,3) from the plane x-y+z = 5 measured parallel to the line x+12=y+32=z+1−6

Answers

Answered by aquialaska
1

Answer:

Step-by-step explanation:

Given: Point ( 1, -2, 3 ) , Equation of Plane : x - y + z = 5 and Equation of Line : \frac{x+1}{2}=\frac{y+3}{2}=\frac{z+1}{-6}

To find Distance of Point from plane measured along line

Let say point A ( 1, -2, 3 )

Given Equation of Plane, x - y + z = 5

Given Equation of Line l, \frac{x+1}{2}=\frac{y+3}{2}=\frac{z+1}{-6}

First we find equation of line AB which is parallel to line l,

Slope of line l ( 2, 2, -6 )

using this slope and point A,

Equation of line AB , given by

\frac{x-1}{2}=\frac{y+2}{2}=\frac{z-3}{-6}

from this equation we find genral formula for a point on line AB,

\frac{x-1}{2}=\frac{y+2}{2}=\frac{z-3}{-6}=k

\frac{x-1}{2}=k\:\:,\:\:\frac{y+2}{2}=k\:\:,\:\:\frac{z-3}{-6}=k

x-1=2k\:\:,\:\:y+2=2k\:\:,\:\:z-3=-6k

x=2k+1\:\:,\:\:y=2k-2\:\:,\:\:z=-6k+3

So, Point B ( 2k+1, 2k-2, -6k+3 )

Point B lies on Plane also.

Now we coordinates of point B in equation of plane,

2k + 1 - ( 2k - 2 ) + ( -6k + 3 ) = 5

2k + 1 -2k + 2 -6k + 3 = 5

2k - 2k - 6k +1 +2 +3 = 5

-6k + 6 = 5

-6k = 5 - 6

-6k = -1

k=\frac{-1}{-6}

k=\frac{1}{6}

⇒ Coordinates of Point B ( 2\times\frac{1}{6}+1\:,\:2\times\frac{1}{6}-2\:,\:-6\times\frac{1}{6}+3 )

⇒ Coordinates of Point B ( \frac{1}{3}+1\:,\:\frac{1}{3}-2\:,\:-1+3 )

⇒ Coordinates of Point B ( \frac{1+3}{3}\:,\:\frac{1-6}{3}\:,\:2 )

⇒ Coordinates of Point B ( \frac{4}{3}\:,\:\frac{-5}{3}\:,\:2 )

Finally By using distance formula we get the distance between point A and Point B

Distance = \sqrt{(1-\frac{4}{3})^2+(-2+\frac{-5}{3})^2+(3+2)^2}

               = \sqrt{(\frac{3-4}{3})^2+(\frac{-6-5}{3})^2+(5)^2}

               = \sqrt{(\frac{-1}{3})^2+(\frac{-11}{3})^2+25}

               = \sqrt{\frac{1}{9}+\frac{121}{9}+25}

               = \sqrt{\frac{1}{9}+\frac{121}{9}+\frac{225}{9}}

               = \sqrt{\frac{1+121+225}{9}}

               = \sqrt{\frac{347}{9}}

               = \frac{\sqrt{347}}{3}

Therefore, Distance = \frac{\sqrt{347}}{3}   units

Attachments:
Similar questions